Efficient Pseudorandom Correlation Generators: Silent OT
Extension and More (BCG+19b)

AW
EMPCHI 25 A Rlcorrelated randomness, ZU10T, {BERERCEMRI, LEHEcommunication]
storage,

BLEEMEIE—8 D NlocalitE, X4Fonlineit&ERfcommunicationfi =

PCGRENEIENZEE:

A dream goal would be to replace this source of correlated randomness with short correlated
seeds, which can be “silently” expanded without any interaction to produce a large amount of
pseudorandom correlated randomness. This process should emulate an ideal process for
generating the target correlation not only from the point of view of outsiders, but also from the
point of view of insiders who can observe the correlated seeds. We refer to such an object as a
pseudorandom correlation generator, or PCG for short

BRZMEMPCHAEREMcorrelated randomness:

e oblivious linear-function evaluation (OLE) correlations

e vector OLE (VOLE) correlation

* subfield VOLE (sVOLE)

e multiplication triples (also known as “Beaver triples”)

e one-time truth tables (OTTT)

o £ (BCG+20) HITEE11iL1R ZauthenticatedhirZ4sicorrelation
o —ULbgeneralized#ff/Z: bilinear correlation. degree-d correlation

ZBINTERNMER A D HEMLHRNARHRASHE, —ERILARISIF5ZE (BCGI18) hEAR
NREENSEXH@R.

In particular, there was no prior approach (even a heuristic one) for constructing a concretely

efficient PCG for OT correlations.

A T{FHRad

o HEH—TPCGHEX, HEHHRIERENAIEREARI—Fsimulation-basedE X, FENXMENZE
ToIEIBRAY,
Unfortunately, we show that such a definition is impossible to realize even for simple
correlations. Intuitively, the impossibility follows from the fact that in the real distribution k

“explains” the output of the honest party in an efficiently verifiable way, whereas such an
explanation of r1_p cannot be generated from 73 in the ideal distribution.

o ANLHIIPCGEXWARHEERN, {BREIRH—FMPC protocol with stronger security
requirement, B Aplug-and-playBJ{EAFIIEXHIPCG, #iERiR, fiFadversaryB 2ikENH
CAJrandomnessfAfG &% 45honest partyftt iR #EcorrelationiZBXfJrandomness,

It fortunately turns out that natural MPC protocols in the preprocessing model already
satisfy this stronger security requirement.

o PCGHIHSStHEZE S
In particular, HSS for general circuits implies PCG for all additive correlations, which include
most of the useful MPC correlations as special cases. (This is only a feasibility result, which
does not directly imply concretely efficient constructions.)

o AXNHRETEZERZ—: “the first concretely efficient construction of PCG for the oblivious transfer
(OT) correlation”, & T A8 7 LPN-assumption, &8 T correlation-robust hash function in a black-
box way, X hashSLFRHA] A Fgeneral-purpose hash function or block ciphersLi)

we obtain a silent OT extension protocol that generates n pseudo-random OT instances
using a small number of OTs, with a total of O(n®) bits of communication for any € > 0.
This should be compared with existing OT extension protocols [Bea96,IKNP03] that do not
require the LPN assumption but where the communication complexity is bigger than n.

» IRERX: Concrete Efficiency. Our LPN-based PCG for OT is very attractive in terms of concrete
efficiency, and we expect it to outperform state-of-the-art OT extension protocols [IKNPO3,
ALSZ13,KK13] in settings where communication is the bottleneck.

o —LCE{thp2-party correlation #i& (BT &M EHHassumption) :

o PCG for Constant-Degree Polynomials from LPN.
The main caveat is that even for generating simple degree-d correlations, such as (n)
Beaver triples (d = 2), the computational complexity of Expand is bigger than nd,

much slower than our PCG for OT

o PCG for One-Time Truth Tables from any PRG.
We present a very simple PCG for authenticated OTTT using only a distributed point
function (DPF) [GI14,BGI16b], which in turn can be efficiently constructed from any
pseudoran- dom generator (PRG). This PCG follows naturally from a building block of
the silent OT extension construction. It compresses the storage cost of an
authenticated OTTT from O(An) bits down to O(log n) bits, for a table of size n

o PCGs from Homomorphic Secret Sharing:
25) practically feasible PCG for OLE and (authenticated) Beaver triple correlations(which

are useful for arithmetic MPC protocols such as SPDZ [DPSZ12)). 7£iX 4 i&E R A FARIHSS
ETF ring-LWE [BGV12, DHRW16, BKS19] and the BGN (pairing-based) cryptosystem
[BGNO05,BGl16a,BCG+17]. To expand the seeds, we rely on a multivariate quadratic (MQ)
assumption based PRG, which limits the stretch to sub-quadratic, but allows for reasonable
computational efficiency. EAXFPIEXS Fsilence-OT RI€, BB —TLE: B EmMulti-
party correlation.

e PCG for multi-party correlation:

Finally, we present a general transformation for extending certain classes of PCGs from the
2-party to the multi-party setting. This can be applied to PCGs for simple bilinear correlations,
including VOLE and Beaver triples, giving the first non-trivial, efficient PCG constructions in
the multi-party setting. The transformation applies to most of our 2-party PCGs, including the
LPN-based PCG for constant-degree correlations.

On_ top of the silent preprocessing feature, an appealing application of our multi-party PCGs
is in obtaining secure M-party computation protocols with total communication complexity
O(Ms 4 M? - s¢) (for circuit size s and constant 0 < € < 1). The O(Ms) term is the cost of the
(information-theoretic) online phase, and the O(M? - s¢) term is the cost of distributing the PCG
seed generation, which is the only part of the protocol requiring pairwise communication. This
should be contrasted with OT-based MPC protocols, which have total communication complexity
2(M?s) [GMWS87,HOSS18] . Protocols with such communication complexity (without the silent
preprocessing feature) could previously be based on different flavors of somewhat homomorphic
encryption [FH96, CDN01,DPSZ12]. We get the first such protocol that only relies on LPN and
OT, and the first practically feasible protocol that has sublinear-communication offline phase
and information-theoretic online phase.

FMPCGHENDERE:

PCG Section 5 Section B Section 6 Section 4.4 Sections 7.3,C,D,E Sections 7.4,F
Assumption LPN PRG" LPN deg-d HSS + MQ/LPN SXDH + LPN LWE + MQ
Correlations oT" OTTT" deg-d degree-d /2 small-ring deg-2 deg-d
Efficiency IM OT/s" - - - 5 OLE/s! 7000 ABT /s
Multiparty X X v 4 X v

(bilinear corr.)

F'sectionZ [B]x R 451

O OO0~ WOWN =

. section2: technical overview

. section3: Preliminary

. section4: PCG definition and foundational results

. section5: t3i&silence OT extension AN —LEEAMN A (ZINIZK)

. section6: LPN-based construction of PCG for general constant-degree correlations

. Msectiond. 4f9E FPRGHEPCGHI—AR 5%,
Zlsection7.3%07.4F E Fgroup/latticelIHSSH31& 5 & Zcorrelation,

7. section8: EFprogrammable 2-party PCGHJiEmulti-party PCGs for simple bilinear correlations

Preliminar:

Notation:

mial. For two families of distributions X :u{)} A} and Y = {Y)} indexed by a sevcurity palzan;eter
A € N, we write X ~Y if X and Y are computationally indistinguishable (namely, any family of

circuits of size poly(\) has a negligible distinguishing advantage), X RY if they are statistically
indistinguishable (namely, the above holds for arbitrary distinguishers), and X =Y if the two
families are identically distributed.

Funciton Secret Sharing (FSS):

Definition 1 (Function Secret Sharing; adapted from [BGI16b]). A 2-party function
secret sharing (FSS) scheme for a class of functions C = {f : I — G} with input domain I and
output domain an abelian group (G, +), is a pair of PPT algorithms FSS = (FSS.Gen, FSS.Eval)
with the following syntax:
— FSS.Gen(1%, f), given security parameter A and description of a function f € C, outputs a
pair of keys (Ko, K1);
— FSS.Eval(b, Ky, x), given party index b € {0,1}, key Ky, and input x € I, outputs a group
element y, € G.

Given an allowable leakage function Leak : {0,1}* — {0,1}*, the scheme FSS should satisfy the
following requirements:
— Correctness: For any f : I = G in C and z € I, we have Pr[(Ko, K1) & FSS.Gen(1*, f) :
> befo,1} FSS-Eval(b, Ky, z) = f(z)] = 1.
— Security: For any b € {0,1}, there exists a PPT simulator Sim such that for any polynomial-
size function sequence fy € C, the distributions {(Ko, K1) & FSS.Gen(1*, f) : K3} and

{Ky & Sim(1*, Leak(f)))} are computationally indistinguishable.

Unless otherwise specified, we assume that for f : I — G, the allowable leakage Leak(f) outputs
(I,G), namely a description of the input and output domains of f.

Some applications of FSS require applying the evaluation algorithm on all inputs. Follow-
ing [BGI16b, BCGI18|, given an FSS scheme (FSS.Gen, FSS.Eval), we denote by FSS.FullEval an
algorithm which, on input a bit b, and an evaluation key K} (which defines the input domain 1),
outputs a list of |I| elements of G corresponding to the evaluation of FSS.Eval(b, K3,) on every
input z € I (in some predetermined order). While FSS.FullEval can always be realized with ||
invocations of FSS.Eval, it is typically possible to obtain a more efficient construction. Below,

ZEMHNEW: BRT fEOmAFE LA/, key computationly f2iE f .
— PNEEMRE: KL R Fevaluationfy6 A o B :
Remark 2. In any FSS scheme for a sufficiently rich class of functions (including point func-

tions), each of the two evaluation functions F%(z) = FSS.Eval(b, K, z) is a pseudorandom func-
tion [BGI15]. Some of our constructions will use this property.

T 4SRRIFSS:

1. distributed point functions (DPF) : BJLARPRGHIIE:

A distributed point function (DPF) [GI14] is an FSS scheme for the class of point functions
fap : {0,1} — G which satisfy f, s(a) = B, and f, () = 0 for any = # a. A sequence of
works [GI14,BGI15, BGI16b| has led to highly efficient constructions of DPF schemes from any
pseudorandom generator (PRG), which can be implemented in practice using block ciphers such
as AES.

Theorem 3 (PRG-based DPF [BGI16b], Theorems 3.3 and 3.4). Given a PRG G :
{0,1}* — {0,1}2**2, there exists a DPF for point functions fo 5 : {0,1}* — G with key size
£-(A+2)+ A+ [logy |G| bits. For m = [l&ngl(g'], the key generation algorithm Gen invokes G at
most 2(£ +m) times, the evaluation algorithm Eval invokes G at most £ + m times, and the full
evaluation algorithm FullEval invokes G at most 2¢(1 4+ m) times.

2. multi-point function secret sharing (MPFSS)

Definition 4 (Multi-Point Function [BCGI18|). An (n,t)-multi-point function over an
abelian group (G,+) is a function fsy : [n] = G, where S = (s1,---,8;) is an ordered sub-
set of [n] of size t and y = (y1,--- ,y) € G, defined by fsy(si) = y; for any i € [t], and
fsy(x) =0 for any x € [n] \ S.

We assume that the description of S includes the input domain [n] so that fg, is fully
specified.

B AE1&1Et " DPFINE—&EtaiE, tha]BAR “batch code” iR, W (BCGI8) .
Homomorphic Secret Sharing (HSS) :
IERE NFSSHIXI{BARZS, BX&E secret sharinghR A< HIFHE,

AT —RE R R OXAERIHSS : low-degree multivariate polynomials on shared input vectors
Z2MEW: Hevaluation keyFlshare] LA A X
R W% Esecurity parameter A AR, JTEMbit-lengthZEZZ NI T,

Definition 5 (Degree-d Homomorphic Secret Sharing). A (2-party, secret-key) Degree-d
Homomorphic Secret Sharing (HSS) scheme over a ring (R = R(\),+,-) is a triple of PPT
algorithms HSS = (HSS.Gen, HSS.Share, HSS.Eval) with the following syntax:

— HSS.Gen(lA): On input a security parameter 1, the key generation algorithm outputs a secret
key sk and an evaluation key ek.

— HSS.Share(sk, x): Given secret key sk and secret input value x € R"™, the sharing algorithm
outputs a pair of shares (sg,s1). We assume that a description of the ring R and the input
length n are included in each of (sg, s1).

— HSS.Eval(b, ek, sp, P): On input party index b € {0, 1}, evaluation key ek, share sy of an input
vector x € R", and degree-d arithmetic circuit P over R with n inputs and m outputs, the
(deterministic) homomorphic evaluation algorithm outputs y, € R™, constituting party b’s
share over R of an output y € R™.

The algorithms (HSS.Gen, HSS.Share, HSS.Eval) should satisfy the following correctness and se-
curity requirements:

— Correctness: For every polynomial poly(\) there exists a negligible negl(\) such that for
every A, input ¢ € R™ (where R = R()\)), and degree-d arithmetic circuit P of size poly()\)
we have:

Pr[yo + y1 # P(z)] < negl(N),

where probability is taken over

(sk, ek) <— HSS.Gen(1*); (sg, s1) + HSS.Share(sk, z);
yp <+ HSS.Eval(b, ek, s, P), b € {0,1}.

— Security: For any b € {0,1}, pair of input sequences xx,x) € R™ of polynomial length
n(A), the distribution ensembles Cy(A, zy) and Cy(A, z\) are computationally indistinguish-
able, where Cy(\, 2) for z € {zy,x\} is obtained by sampling (sk,ek) < HSS.Gen(1*), sam-
pling (so, 1) HSS.Enc(sk, z), and outputting (ek, sp).

Learning Parity with Noise (LPN) :

Definition 6 (LPN). Let D(R) = {Dk,q(R)}k,qen denote a family of distributions over a ring
R, such that for any k,q € N, Im(Dg ,(R)) C RI. Let C be a probabilistic code generation
algorithm such that C(k,q,R) outputs a matriz A € R*¥*9. For dimension k = k()\), number
of samples (or block length) ¢ = q()\), and ring R = R(A), the (D,C,R)-LPN(k,q) assumption
states that

{(A4,0) | AL C(k,q,R),e & Dy y(R),s £ F* b s- A+ e}
~{(A,b) | A& C(k,q,R),b & R}

SEE AR, H Hcomputational indistinguishableth 2EFAE X,
ETRBANEHRZE RerrorAE Ehamming weightf) D 1 ESLAILPN :

For a finite field F, we denote by HW,(F) the distribution of uniform, weight r vectors over
F; that is, a sample from HW,(F) is a uniformly random nonzero field element in r random
positions, and zero elsewhere. The (Ber,.(FF)?, C,F) — LPN(k, q) assumption corresponds to the
standard (non-binary, fixed-weight) LPN assumption over a field F with code generator C,
dimension k, number of samples (or block length) ¢, and noise rate r.

EEE, WMRMrAEFEEE T EERRRE R Berror, BBARPILARSETEITIARE, RU—
fRERq = O(k).
Definition 7 (dual LPN). Let D(R) and C be as in Definition 6, n,n’ € N with n’ > n, and
define C+(n’,n,R) = {BeR"*": A-B=0,A € C(n —n,n’,R),rank(B) = n}.
For n = n(A\),n’ = n'(X) and R = R(\), the (D,C,R)-dual-LPN(n’,n) assumption states
that

{(H,b) | HE& CH(n',n,R),e & D(R),b+ e-H}
~ {(H,b) | H & C-(n/,n,R),b & R}

The search version of the dual LPN problem is also known as syndrome decoding. The
decision version defined above is equivalent to primal variant of LPN from Definition 6 with
dimension k¥ = n’ — n and number of samples ¢ = n’. This follows from the simple fact that
(s-A+e)-H=s-A-H+e-H=e-H, when H is the parity-check matrix of A.

T2, BRIFLE, dhJloverwhelming probability HiF#k, B[NiMHBLMXZ,
regular-LPN or regular syndrome decoding problem or regular error distribution: 2% Nerror[@£¥F 7

BE TR, SRE B{XE—1HENNLIEBerror,

Pseudorandom Correlation Generators EE X :
25N

1. section4.1: PCGHRIERE X

2. section4.2: iitBAsimulation-basedE X R A B LA E(ERIBIMPCH, B2 AEESLIN,

3. section4.3: FATAIE X AT AR L MNBL 2 HERIMPCHER, F3X F#BAKNIMPCHT#H &

4. section4.4: two-way relation between PCGs for a useful class of “low-degree correlations” and
HSS for low-degree polynomials

B
Definition 10 (Correlation Generator). A PPT algorithm C is called a correlation genera-
tor, if C on input 1* outputs a pair of elements in {0,1}" x {0,1}" for n € poly(}).

Definition 11 (Reverse-sampleable Correlation Generator). Let C be a correlation gen-
erator. We say C is reverse sampleable if there exists a PPT algorithm RSample such that for
o € {0,1} the correlation obtained via:

{(Rh, R}) |(Ro, R1) & C(1"),R. := Ry, R} _, & RSample(o, R,)}

is computationally indistinguishable from C(1).

Definition 12 (Pseudorandom Correlation Generator (PCQG)). Let C be a reverse-sampleable

correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of algorithms
(PCG.Gen, PCG.Expand) with the following syntax:

— PCG.Gen(1%) is a PPT algorithm that given a security parameter X\, outputs a pair of seeds
(ko, k1);

— PCG.Expand(o, k) is a polynomial-time algorithm that given party index o € {0,1} and a
seed ky, outputs a bit string R, € {0,1}".

The algorithms (PCG.Gen, PCG.Expand) should satisfy the following:

— Correctness. The correlation obtained via:
{(Ro, R1) |(ko, k1) & PCG.Gen(1*), R, + PCG.Expand(c, k,) for o € {0,1}}

1s computationally indistinguishable from C(1>‘).
— Security. For any o € {0,1}, the following two distributions are computationally indistin-
guishable:

{(ki—o, Ry) | (ko, k1) & PCG.Gen(1*),R, + PCG.Expand(c, k,)} and
{(ki—s, Ro) | (ko, ki) & PCG.Gen(1*),R;_, < PCG.Expand (s, ki_,),
R, & RSample(o, R1—5)}

where RSample is the reverse sampling algorithm for correlation C.

ZEMRBEWIERE: adversaryi5Z|H 2 F P MrandomnessFE LI TBE1 2 — P ARrandomness, [#
T HiE Zcorrelatediy,

HHsetupflIPCG: —MMERMER, FIAFEZ/XPCG instance{E/H:

Remark 18 (PCG with Setup). We sometimes consider an additional algorithm PCG.Setup to
sample a secret key, public parameters and a share of evaluation keys (or a subset of the
mentioned), which can be reused throughout several instances. More precisely: On input 1*,
PCG.Setup returns a tuple (pp, sk, {eks}sef0,13), PCG.Gen receives the secret key sk as addi-
tional input (always assumed to include the public parameters pp), and PCG.Expand receives
the public parameters pp and the respective evaluation key share ek, as additional inputs.

Multi-Party Setting: EXFE£HEE:

Remark 14 (PCG in the Multi-Party Setting). We also consider multi-party PCGs for reverse
sampleable multi-correlation generators CM which on input 1* outputs elements in ({0,1}")M.
In this case, PCG.Gen(1*) returns a M-tuple (ki, ..., kas). Correctness is defined accordingly and
security required against any subset of colluding parties. More precisely: For any T' C {1,..., M},
we require the following two distributions to be computationally indistinguishable:

{({kj}jer, {Ri}igr) |(k1, ..., k) & PCG.Gen(1%),
Vi ¢ T: R; + PCG.Expand(i,k;)} and

{({kj}jer, {Ri}igr) |(k1, ..., knr) € PCG.Gen(1%),
Vj € T: R; + PCG.Expand(j, k;),

{Ri}igr < RSample(T, {R;}jer)}
Simulation-Based & X A v 1T

BEWiE%: B ZE S TMPC protocold Hcorrelated randomnessE {18} 7] LAB 1& Fseed £ A HICR1Y;
B, BRENZBE—THEEMprotocol, F—MALEMCR (R, Ry), REEEERAETA, U
RENEIZRE— Agenerate®i P seed (k1, k2), BB4simulationThiie X F 408 R1 Gk E k1, X%
=B IFTIEMMER:

Simulating the above protocol given only the output R1 corresponds to finding a short seed k1
that can be (deterministically) expanded to R1. If the entropy in the second output of C exceeds
the seed-length |k1|, such a compression violates correctness, as it could be used to distinguish
R1 from a string that is indeed chosen via C.

S| NLERIFIEEZ, Yao Incompressiblity Entropy :

BWIERE: Nomimb eI MRS ARENES:

More precisely, Yao incompressibility entropy [HLR07,Ya082] is a measure on how well outputs of a
distribution can be compressed on average, when the compressing and decompressing algorithms
are required to be efficient. For example, a pseudorandom bit string of length | has Yao
incompressibility entropy |.

Definition 15 (Yao Incompressiblity Entropy [HLRO7]| (simplified)). Let £ = ¢(\) € N.
A probability ensemble X = {X,} has Yao incompressibility entropy at least ¢, if for every pair
of polynomial sized circuit-ensembles C = {Cx}, D = {Dx} where C has output bit-length at
most £ — 1, there exists a negligible function negl: N — RT such that for every sufficiently large
positive integer A we have

Prlz « X: D(C(x)) = 2] < % + negl(}).

Theorem 16 (Impossiblity of Simulation-Based Definition for Non-Trivial PCGs).
Let C be a reverse-sampleable correlation generator, where the Yao incompressibility entropy of
the output is £. Then, for every pseudorandom correlation generator PCG = (PCG.Gen, PCG.Expand)
satisfying simulation-based security, the output of the seed generation PCG.Gen algorithm must
at least have bit-length £.

Proof. Let PCG = (PCG.Gen, PCG.Expand) be a pseudorandom correlation generator for C that
satisfies simulation-based security. Then, in particular, the following protocol IIpcg has to satisfy
one-sided security against P;: Party Py runs (ko, k1) < PCG.Gen(1*) and sends k; to P;. Finally,
Py outputs Ry < PCG.Expand(1, k1).

Let /1 be the Yao incompressibility entropy of the output of C!'(1*) := {R; | (Ro, R1) <
C(1*)}. Further, let

Chcc(1?) := {Ry | (ko, k1) & PCG.Gen(1*), Ry + PCG.Expand(1,ki)}.

By correctness of the PCG, the output of Cj¢ (and therefore the output of the protocol Ipcg)
must meet the Yao incompressibility entropy #1, as an efficient pair of compressor and decom-
pressor could be used as a distinguisher between C' and CéCG.

By [HW15, Theorem 5|, for any protocol between two parties Py and P; with one-sided
security against “honest-but-deterministic’!! P;, where P; has no input, it holds: If the Yao

icompressibility entropy of the output of Py is £1, then the communication complexity from Py
to P; must be at least ¢1 bits.

Therefore, as seed expansion is deterministic, the bit-length |k;| of the seed of the second
party must be at least ¢;. Reversing the roles of Py and P; together with additivity of Yao
incompressibility entropy yields the required.

FE X RI(ER:

HAIMPCGHR A E EEAE S A5 CRMprotocol, E Fcorrupted A 7] ARZ b 16 %6
B, FHRATESSIA Fifunctionality, EHcorrupted party 8] L% E B 2 ioutput, ZAfShonest
partytRHE1X 14 i ffreverse sampling:

Functionality FE o

On input 1%, the functionality does as follows:

— If no parties are corrupt, sample (Ro, R1) &c (1*).
— Otherwise, if P, is corrupt, wait to receive R, € {0,1}"“ from A, then sample Ri_, &
RSample(o, R).

The functionality outputs Ro to Po and R; to Pi, and then halts.
— Mgl FErandom OT, [a]&: random OTHIEEOTHIXR?

To realize FE we use a simple protocol, ITS that calls FPCG-Gen g5 that each party

COorrx? corrx? corr

obtains a seed k., which is then expanded to get the output PCG.Expand(o, k).

Theorem 19. Let PCG = (PCG.Gen, PCG.Expand) be a secure PCG for a reverse-sampleable
correlation generator, C. Then the protocol Ieonx securely realizes the FC,,., functionality against
a static, malicious adversary.

Proof. Let A be a static adversary against the protocol . We construct a simulator Sim, which
interacts with A and F<,,,, to produce a view for A that is indistinguishable from a real execution
of the protocol. When both parties are corrupted, the simulator just runs A internally and
security is straightforward. Similarly, when both parties are honest, simulation is trivial and
indistinguishability follows from the correctness of PCG. Now suppose that only P, is corrupted,
for ¢ € {0,1}. On receiving the input 1%, Sim samples a pair of seeds (ko, ki) & PCG.Gen(1?),
then sends k, to A as its output of F.c®%" computes R, <+ PCG.Expand(c, k,) and sends this
to FC,,.. Notice that in the ideal execution, the view of the distinguisher consists of the seed k,
and the honest party’s output R;_,, which is computed by Fccorr* as Ri_, & RSample(o, R,).
The only difference in the real execution, is that there the honest party’s output is computed
with PCG.Expand(1 — o,k;_,). These two views are computationally indistinguishable, due to

the security property of PCG.
HHSSHEPCG:

BERIEPCGHIHSSEEE—i#E., XEEXEZE[Radditive correlation:
consider the special case of additive correlations, where Ry, Ry are uniformly distributed subject
to Ry + R1 = f(X) for a random input X and fixed function f. Now, consider an HSS scheme

This gives rise to the following PCG construction: During key generation a short seed k is
shared between the players (as HSS shares). For expansion, the players can then locally evaluate
f(PRG(k)) via the HSS operations. By the correctness of the HSS that indeed gives outputs
Ry, Ry with Ry + R; = f(X), where X = PRG(k). In this section we formally prove that the

described construction meets the PCG requirements.

FENLTERE, RAANEHMNLERESMAHSSE R FRERAIREEE, FRAEIIZERSOHRIIEE
PCGHIHSS, 1X—|a)@li§Esection 7k,

TEEformalizedENX :

BJoE— M LRIPRG:

Definition 20 (D‘-Pseudorandom Generator). Let R be a ring (parametrized implicitly by
M) and let D* be a distribution on Rt. We say PRG: R — R™ is a D*-pseudorandom generator
(PRQG), if the following two distributions are computationally indistinguishable:

{Y | X & DYR),Y = PRG(X)} and {Y Yy & u"(R)} .

Hx 2 —Fhadditive correlation:

Definition 21 (Correlation Generators for Additive Correlations). Let R be a ring. Let
n,m € N and F C {f: R" — R™} be a family of functions. Then we define a correlation
generator Cr for F as follows: On input 1* and f € F the correlation generator Cr samples
X & UM(R), and returns a pair (Ro, Ry) € R™ x R™, which is distributed uniformly at random
conditioned on Ry + R; = f(X).

BEHSSH—MitmR, KBNS Mpartyiimt AR :
Definition 22 (HSS satisfying Pseudorandomness of Outputs). We say an HSS HSS =
(HSS.Gen, HSS.Share, HSS.Eval) for a function family F := {f: R™ — R™} satisfies pseudoran-

domness of outputs, if for all f: R™ — R™ € F, (sk, {eks }oef0,1}) < HSS.Gen(1%), X & U™(R),

(ko, k1) & Share(sk, X), and o € {0,1} the output Ry, & HSS.Eval(o,eks, ko, f) is distributed
computationally close to uniformly at random over the output space.

Note that if f(UU™(R)) is close to being uniformly random on R™, this property follows from the
security of HSS.

REMERATNMIE:

— PCG.Setup(1*): Sample and output (sk, {eko }oc{o,13) < HSS.Gen(1%).
— PCG.Gen(sk): Sample 7 < D* and output (ko, ki) +— HSS.Share(sk, r).
— PCG.Expand(o, eko, ko, f): Output R, < HSS.Eval(o, eks, ks, f o PRG).

Fig. 2. PCG for correlation Cr. Here, PRG is a D*-PRG and HSS = (HSS.Gen, HSS.Share, HSS.Eval) an HSS for
the family of functions Fuss := {f o PRG: r — f(PRG(r)) | f € F}.

EIEFRAMIER, — S S RIESMEFEET A

Theorem 23. (PCG for Additive Correlations from HSS). Let R be a ring and n,m, £ €
N. Let F C {f: R* = R™} be a family of functions. Let PRG be a D*-PRG and HSS =
(HSS.Gen, HSS.Share, HSS.Eval) an HSS with overhead Opss'? for the family of functions Fyss :=
{foPRG: Rt = R™,r — f(PRG(r)) | f € F} that further satisfies pseudorandomness of out-
puts. Then, PCG = (PCG.Setup, PCG.Gen, PCG.Expand) as defined in Figure 2 is a PCG for the
correlation generator Cr with key-length upper bounded by £ - Oyss.

Proof. Correctness. Let f € F. We have

{(Ro, R1) |(ko, k1) & PCG.Gen(1*), R, + PCG.Expand(c, k) for o € {0,1}}
~ {(Ro, R1) |(sk, {eks }sef0,13) « HSS.Gen(1*),r & DX(R), (ko, k1) HSS.Share(sk,),
Ry < HSS.Eval(0, eko, ko, f o PRG), Ry := f(PRG(r)) — Ry}
(Ro, R1) |r & DY(R), Ry + R™, Ry := f(PRG(r)) — Ro}
(Ro, R1) |1X & U™(R), Ry <~ R™, Ry := f(X) — Ro}

Qo Qo

{
{
as required, where the first transition follow by correctness of HSS, the second by pseudoran-

domness of outputs of HSS and the last by pseudorandomness of PRG.
Security. Let o € {0,1}. We have

{(k1i—o, Rs) |(ko, k1) & PCG.Gen(1*), R, + PCG.Expand(c,k,)}
~ {(ki—o, Ro) |(sk, {eks }oef0,1)) < HSS.Gen(1*),r & D(R), (ko, ki) ¢ HSS.Share(sk, r),
Ri_o « HSS.Eval(1 — 0, eki_o, ki—g, f 0 PRG), Ry := f(PRG(r)) — R1_o}
{(ki—s, Rs) |(sk, {eks }oefo,1}) + HSS.Gen(1Y),r & DY(R),r’ & DE(R),

Qo

(ko, k1) < HSS.Share(sk,7’), R1_, + HSS.Eval(1 — 0,eky_,, ki_q, f © PRG),
Ro := f(PRG(r)) — R1-o}

~ {(ki—o, Ro) |(sk, {eks }oeo.1)) < HSS.Gen(1Y), X & U™(R),r' & DY(R),
(ko, k1) < HSS.Share(sk,r’), R1_, + HSS.Eval(1 — 0,eki_,, ki_q, f © PRG),
R, = f(X) — Ri-},

where the first transition follows by correctness of HSS, the second transition by security of HSS
and the last by pseudorandomness of PRG.

ETFLPNHsilent OT-extension:

XEB 44 Hisublinear communication complexity4 Bn“random OTHprotocol,
B (BCGI18) mHiEiSEIcorrelated OT, #A/GFA (IKNP03) HJOT extension protocol, 15%I—
random OTHIPCG, RIS (Ds17) L&A liseed, =R FAsublinear OT extension,

¥1EsVOLEKIPCG:

subfield vector oblivious linear evaluation (SVOLE)E X :

Subfield VOLE is a form of vector oblivious linear evaluation (VOLE) over F,, which com-
putes w = ux 4+ v, where the vector w is restricted to lie over a subfield F, C F,, for ¢ = p"
(and we multiply u with z € F, component-wise, by viewing x as a vector over F,). It outputs
(u,v) to the sender and (z,w) to the receiver.

LS EhA:
The construction in Fig. 3 uses the function spread,, (S, y), which expands aset S = (s1,...,8|g) C
[n] and a vector y €]Fl,s| into the vector p € Iy, where us, = y; for i = 1,...,|S|, and p; =0

for j € [n]\ S. It is a generalization of the VOLE generator from [BCGI18|, which follows from
the case p = q.

BRgiE:

Construction GeoLE

PARAMETERS:

— Security parameter 1>‘, integers n’ > n, ¢ = p", and noise weight t.
— A code generation algorithm C and H,/, & C(n/,n,F,).
— A multi-point FSS scheme (MPFSS.Gen, MPFSS.FullEval).

CORRELATION: Output (u,v) and (z,w), where z < Fy, u <& Fp, v & Fy and w = uz + v.
GEN: On input 1*:

Pick a random size-t subset S of [n/], sorted in increasing order.
Pick a random vector y € (F3)" and z & F,.

Compute (K&, K%) & MPFSS.Gen(1*, fs.2.y).

Let ko < (m,n, K5, S,y) and k; < (m,n, K).

Output (ko, k1).

ol W=

ExPAND: On input (o, ks):

1. If 0 = 0: parse ko as (m,n, K5, S,y). Set u < spread,,(S,y) in IFQI. Compute vy <«
MPFSS.FullEval(0, K§°) in F?'. Output (w,v) < (g - Hp/ , =00 - Hpr).

2. If ¢ = 1: parse k; as (m,n, K, z). Compute v; < MPFSS.FullEval(1, K{*) in]Fgl, and output
(x,w < v1-Hy p).

Fig. 3. PCG for subfield vector-OLE

TE IR RRIAAIIERR -

Theorem 24. Suppose the (HW:, C,F,)-dual-LPN(n’, n) assumption holds, and that MPFSS is
a secure multi-point FSS scheme. Then the construction GsyvoLg (Fig. 3) is a secure PCG for
the subfield vector-OLE correlation.

Proof. First let ¢ = 0. Here, in the real distribution, the adversary is given a key kg =
(m,n, K5, S,y), where (ko,ki) & GewoLe.Gen(1), as well as the expanded output R; =
(z,w) €& GsoLe.Expand(k;). We need to show that this is indistinguishable from the ideal
distribution, where R; < RSample(0, Rp).

Recall that RSample(0, Ry) proceeds by sampling x & [F, and outputing (z,w = ux +v). In
the real distribution, x is also uniformly random, and from the correctness of MPFSS we have
that

w = -Hyp,=(vo+z- spread,,(S,y)) Hypn=v+z-u

which is identically distributed to the ideal distribution.

Next consider the case of c = 1. We use the following sequence of games.

Game Gy. This is the real distribution, where the adversary gets k; = (m,n, K{SS,LE) and
Ry = (u,v) & GsvoLe-Expand(0, ko), that is, w = p - Hy 5, for p & HW: i (Fp) and v =
Vo - Hn/,n = (’Ul +x- p,) . Hn’,n-

Game G;. Here, we compute K using the MPFSS simulator Sim(1%,---), and v = (v +
x -) - Hy p. This is indistinguishable from Gy, by the security of the MPFSS.

Game (5. Finally, here we compute u & [, instead of pu- Hyy 1, and let v = vy - Hy p+2-u.
Notice that since KT is independent of u, any adversary distinguishing G; and G can be used
to attack (HW;, C,Fp)-dual-LPN(n/, n).

Game (> is identical to the ideal distribution, so this completes the proof of the security
property.

Finally, we show the correctness property, namely, that the outputs (Rp, R1) = (u, v, z,w)
are computationally indistinguishable from outputs of D(1%). By the same reasoning as security
for 0 = 0, Ry is already identically distributed to the output of RSample(0, Ry), so we write
w = uzr+v. Denoting the uniform distribution on Fy by U}, we then use the following sequence
of hops:

(u,0,2,w) = (- Hy , (01 + T 2) - Hyy 7, 0 + 0)

& (“’Hn’,na(U(?, +.’II-[.L) 'Hn’,naxaux+v) (3)
N (1 Hyr 0, U, T, ux + 0) (4)
~ (Uy, Uy @, uz +v) (5)
= D(1")

where (3) follows from the pseudorandomness of the MPFSS outputs (cf. Remark 2). Hop (4)
holds because the LPN assumption implies from Remark 8 that H, s, must be full-rank with
overwhelming probability, so preserves uniformity when multiplying by a uniform vector. Finally,
(5) also holds due to the pseudorandomness of the LPN assumption.

Remark 2. In any FSS scheme for a sufficiently rich class of functions (including point func-
tions), each of the two evaluation functions Fg(z) = FSS.Eval(b, K, z) is a pseudorandom func-
tion [BGI15]. Some of our constructions will use this property.

iRiEsubfield VOLER] IA#i&correlated OT (A-OT) , FiE—FhsenderfOEUER N HEENEEN
OT, 7£{RZpractical MPCHRAESLFRAIALL, B F, BUE AN ZoiE, B3R #senderflreceiverfiith
fiI, MeIAEE,

BB T ErERE, EFRAIENtensor product B AR D EMEEIFEFR .

Subfield VOLE immediately gives a PCG for correlated OT (or A-OT). This is a batch of 1-out-
of-2 OTs where the sender’s strings are of the form (w;, w; ®A) for some fixed string A, and is the
main building block in practical MPC protocols such as TinyOT [NNOB12] and authenticated
garbling [WRK17a, WRK17b].

To obtain correlated OT, we run subfield VOLE with p = 2 and ¢ = 2", so the VOLE
sender obtains u; € Fa,v; € For, while the VOLE receiver gets x € For and w; = x - u; + v;, for
1 =1,...,n. Now switching the roles of sender and receiver, the VOLE sender can be seen as an
OT receiver with choice bit u; and string v;. This gives us a correlated OT, since the OT sender
(formerly VOLE receiver) can compute the strings (w;, w; +), and we have v; = w; if u; =0
and v; = w; + x if u; = 1.

PCG for random OT:

L EBSVOLER] AL K correlated OT, FHA{EAR (IKNP03) EJOT extensionit AR, {FRE4E5IEThashiR]
T LAY correlated OT#: 25 grandom OT,

FAN—FMEETE: Correlation Robust Function:
FE[GKWY19]Hh, 1t r] LA fixed-key AES modeled as a random permutation 352 Zp = 207,

Definition 25 (IF,-correlation robust function). Let n = poly(\) and ty,...,t,,x be uni-
formly sampled from Fy, where p" = M) Then, H : {0,1}* x F, — {0, 1}* is F,-correlation
robust if the distribution

(tla ey tny {H(l’tl -J- ZL'), R H(TL, tn—J - x)}jE]Fp\{O})

is computationally indistinguishable from uniform on F" x {0, 1})‘(1"_1)".

EFENMWIS:

Construction Got

PARAMETERS:
— Security parameter 17, integers n, ¢ = p" = A*().

— An Fp-correlation-robust function H : {0,1}* x F, — {0,1}*.
— The subfield-VOLE PCG (GsvoLe-Gen, GsvoLe-Expand)

CORRELATION: Outputs (Ro, R1) = ({(us, i,u;)}icn), {wi,; Yicinl,jeip)), where w;; < {0,1}* and
ui & {1,...,p}, fori € [n],j € [p].

GEN: On input 1%, output (ko, ki) - Gsvore.Gen(1*, 7, p, q).
ExpPAND: On input (o, ke):
1. If o = 0: compute (u,v") < GsvoLe.Expand(o, ko), where u € Fy, v’ € Fy. Compute
v; < H(i,v;) fori=1,...,n

and output (u;,v;).
2. If 0 = 1: compute (z,w’) - Gsvore.Expand (o, ko), where z € Fq, w’ € F;;. Compute

wi; + HG,wi —j-2) fori=1,...,n,Vj€RF,

and output {w; ;}i, ;.

Fig. 4. PCG for n sets of 1-out-of-p random OT

FER9E AR

Theorem 26. Suppose that H is an F,-correlation robust hash function and GsyoLg %s a secure
PCG. Then the silent OT construction (Fig. 4) is a secure PCG for the random 1-out-of-p OT
correlation.

Proof. We start by showing the correctness property. First, from the correctness of GsyoLe we
have
v; = H(i,v)) = H(i, w} — u; - T) = wiy,

as required. Indistinguishability of the outputs from OTj follows first from indistinguishability
of the VOLE outputs (u;, v}, z,w;), and secondly by a standard reduction to the Fp-correlation
robustness property of H.

. C .
U, Vg, Wi,5 = Uy, H(7’7’w’£ — U - $) ~ (Ua H(’L,))

We now consider the security property, for the case o = 0. Here, the real distribution consists
of the seed kg and the sender’s outputs w; ;, for¢ = 1,...,n and j € IF,. From correctness we have

that for u, v’ < GsvoLe-Expand(0, ko), it holds that H(¢,v]) = w; ,,. From the security property
of GsvoLe, we can replace all the sender’s outputs w; j, except for w;,,, with ones computed
using uniform values z,w;, instead of from GsyoLg.Expand. These are then indistinguishable
from uniform under the Fj-correlation robustness of H.

When o = 1, the real distribution contains the seed ki and the receiver’s outputs u;, v;. As
before, from the correctness property we have that v; = w; 4, where w; ; is computed from k; via
GsvoLe-Expand and the hash function. We only need to show that w; is uniform, which follows
directly from the security property of GgyoLg when o = 1.

&G (Ds17) Hidistributed point function, #S%lrandom OTHYE{RSEIN, HothEZE:

To do this efficiently with semi-honest security, we use the black-box protocol of Doerner
and shelat [Ds17] (also used in [BCGI18]) for setting up distributed point function keys. For a
single point function of domain size n, this requires O(logn) OTs on O())-bit strings, giving
O(tlogn) OTs for a multi-bit point function. Implementing each OT with (non-silent) OT ex-
tension [IKNPO03] costs O()\) bits of communication, plus a setup phase of A base OTs. Putting
this together, we obtain the following.

Theorem 27. Suppose the (HWy, C,F,)-dual-LPN(n/, n) assumption holds, and an F,-correlation
robust hash function ezists. Then there is a protocol that uses O(\) 1-out-of-2 OTs to realize n
instances of random 1-out-of-p OT with semi-honest security, using O(tAlogn) + poly(\) bits of
communication.

We remark that this gives OT with sublinear communication when t = o(n/(Alogn)), which
translates to an instance of LPN with noise rate 1/w(Alogn). If the matrix H,, , in GsvoLE is
uniformly random, the computational complexity is dominated by O(n'-n) arithmetic operations;
using more structured matrices based on LDPC codes or quasi-cyclic codes, we get respective
costs of O(n') or O(n') arithmetic and PRG operations.

PCG for Constant-Degree Correlations from LPN:

Fe4a i — Bilinear correlationfiJ#33i% (;Zconstant-degree correlationf— 4545

More precisely, we consider the following type of additive correlations: the party P, receives
pseudorandom vectors (z,, z,) such that B(xg, 1) = 2o + 21, where B is a bilinear
function.

EX |, 8PAZEE—inputfliBinput sharefAF ™ A HMHY:

the general case (where the inputs are shared as well) can be obtained in a blackbox way using

two parallel calls to the PCG for these restricted forms of bilinear correlations

We demonstrate this with the construction below, where BCG_s denotes a
pseudorandom correlation generator for general bilinear correlations, and BCG denotes a PCG for
restricted bilinear correlations. 2&IFARUI T :

— BCG,.Setup(1*) outputs (pp, sk) <& BCG.Setup(1*);

— BCG;.Gen(sk, B) runs twice BCG.Gen(sk, B), and outputs ((ko, kj), (ki,k}));

— BCG;.Expand(pp, o, (ks, k..)) runs twice BCG.Expand, and outputs 2z, = ((1—0)x,+ox,, cx,+
(1-0)z;, Yo + Yo + B(xs, 7).

Then, it holds that

2o + 21 = (zo + =}, (+ 71, B(T0, 1) + B()),) + B(20, () + B(21,Z)))
= (zo + x}, [+ 1, B(xo + 21, T(H + 1))

= (:l:,;c” B(.’B, ;c’))’ denoting T =xy+ mlla x = 336 t oz

BB (from BCG+20)

Construction from [BCGT19b]. Before describing our PCG for OLE, it is instructive to
recall the PCG for general degree-two correlations by Boyle et al. [BCG119b|, based on LPN.
The goal is to build a PCG for the correlation which gives each party a random vector Z;,
together with an additive secret share of the tensor product Zy ® £1. They used the dual form
of LPN over a ring Z,, which states that the distribution

{H,H - 5‘1{ &z g & I st wi(@) = t}

is computationally indistinguishable from uniform, where € is a sparse random vector with only
t non-zero coordinates, for some ¢t < n, and m < n.

The idea of the construction is that the setup algorithm gives each party a random sparse
€o or €1, and computes the tensor product €y ® €}, which has at most ¢ non-zero coordinates.
This product is then distributed to the parties via function secret sharing (FSS), by generating a
pair of F'SS keys for the function that outputs each entry of the product on its respective inputs
from 1 to n?. This function can be written as a sum of ¢ point functions, allowing practical
F'SS schemes based on distributed point functions [GI14, BGI15, BGI16b|. Note that unlike the

case of PCGs for OT or Vector-OLE [BCG*19a, SGRR19], here we cannot replace FSS by the
simpler punctured PRF primitive.
Given shares of €y ® €1 and either €y or €7, the parties expand these using LPN, computing:

Zo=H-¢ey, © =H:-e, 5:(H-50)®(H-51):(H®H)-(€0®51)

where T; is computed by party P;, while 2’ is computed in secret-shared form, using the shares
of €y ® €1 and the formula on the right-hand side.
Notice that both %y and %7 are pseudorandom under LPN, which gives the desired correlation.

Bilinear Correlationfg#33& :

Construction Gy;

PARAMETERS: 1%,n,n/,t,p € N, where n’ > n. A code generation algorithm C and
H, . & C(n',n,F,). A bilinear function B. : (a,83) — c¢- (a ® B)7, where ® denotes the
tensor product.

Gen: On input 1*:

Pick two random size-t subsets (So, S1) of [n'], sorted in increasing order.
Pick two random vector (yo,y1) € (F3)%.

Compute (K&, KT=) & MPFSS.Gen(1*, fs,xs1,500u1)-
Let ko < (n, K5, S0,90) and ky < (n, K™, S1,91).
Output (ko, k1)-

ANl .

Expand: On input (o, k,), parse k, as (n, K=, S,,y,). Set p, < spread, ,(S,,y,) in IF;/ and @,

o - Hpr . Compute v, < MPFSS.FullEval(o, K&) in IF‘I(,"’)2 and set zo + —¢- (Vo - (Hp/ n @ Hyo)7
Output (2o, 25).

Theorem 28. Suppose the (HW;, C,Fp)-dual-LPN(n’, n) assumption holds, and that MPFSS is
a secure multi-point F'SS scheme. Then the construction Gy (Fig. 5) is a secure PCG for general
bilinear correlations.

RO
Efficiency. Instantiating the MPFSS as in [BCGI18], the setup algorithm of Gy outputs seeds of
size t2- ([logn'](A+2) +A+log, |F|) bits, which amounts to O(t?) field elements over a large field
(log, |F| = O(N)). Expanding the seed involves (¢n/)? PRG evaluations and O(n - n/)?2 = O(n*)
arithmetic operations.

MEASNEZ @M TE: (from BCG+20)

Optimizations and additional applications. Boyle et al. state the computational com-
plexity of the above as O(n*) operations, due to the tensor product of H with itself. We observe
that the value of (H-€p)® (H -€1) can be read directly from H - (€y-€])- HT, which requires much
less computation and can be made even more efficient if H is a structured matrix, reducing the
computational complexity to O(nz) We also describe two variants of the PCG which allow pro-
ducing large matrix multiplication correlations with different parameter tradeoffs. While much
less practical than our main constructions, we present these in Section 10 for completeness.

A first attempt. The problem with the above construction is that it produces an entire
tensor product correlation, which inherently requires Q(n2) computation. Even if we only want
to compute the diagonal entries of the tensor product output (that is, n OLEs), we do not see
a way to do this any more efficiently.

The bottleneck is computing the n? entries of €y ® €] to obtain Z. A natural idea to reduce
the computational complexity is to replace €y and €7 by degree-n sparse polynomials ey and
e1, and Zy and Z7 by, say, n/2 evaluations of ey and e; respectively. Then, 2’ is computable in
quasilinear time as evaluations of the polynomial product e - e; of degree 2n. This approach
does not give a secure PCG candidate, though, because &y and &; can be efficiently distinguished
from random using algebraic decoding techniques.

W EER R EBIConstant-Degree Polynomial Correlations:

BT iBshareXSt RS 4 Rtensor product, A ARIMERIIRISEIRZ N Mshare, B{fith:
Generalization. The scheme Gy immediately generalizes to a PCG for arbitrary constant-degree
polynomials,'® where the size of the shares grows as O(td) and the computational complexity is
O((tn))® + (nn/)%). It allows two parties to locally compute, given the shares, additive shares of
(r, P(r)), where r is pseudorandom (under LPN) and P is a degree-d multivariate polynomial
over F.

To see this, notice that we can replace yo ® y; in Gen with Q;y =y ® - -+ ® y, where Rgy
denotes the tensor product of y with itself d times (that is, the list of all degree-d monomials
of y). The parties can then compute shares of all degree-d terms in P(r) for a random r;
to obtain shares of r and the lower-degree terms, we extend the MPFSS values to include
(Y, yRy, - ,®4-1Y) as well as ®yy.

BE—THME:

Corollary 29. Suppose the (HW;y, C,Fp)-dual-LPN(n’,n) assumption holds, and that MPFSS
s a secure multi-point F'SS scheme. Then there exists a secure PCG for general constant-degree
correlations, with share size O(t%) and computational complexity O((n -n')%).

E T GroupsiliLatticesiIPCGHiiE :

X—ER DI & s 2 section 4.4R9EFHSSHIIEPCG,
BAELH T MCRIIMIE, BARHR, PCGs for the generation of bilinear correlations from groups,
and PCGs for so-called authenticated Beaver triples from lattices.

BAAHMIT N ERNIFAIPRG:

EFMQ:
Remark 34 (PRG from MQ). Let R be aring, and £,n € N. Let M be a distribution over RExn
and M & M(£2,n,R). We assume that for an appropriate choice of parameters

PRGuq: RE = RY\r—=M' - (r®r)

is a PRG. We say M(¢£?,n,R) has sparsity p, if for every matrix M in the image of M(¢2,n,R),
the number of non-zero entries in any column of M is at most p.

tip: MQ#EIARNE— N EEIRL £/assumption, (in particular, the pseudorandomness of the MQ-
based PRG reduces to the conjectured one-wayness of solving a random system of quadratic

assumptions [BGP06]) , REZZENHATIZERWEAEEK, EE2UNFRENRERANZE
SMBAEFINBEHANAR MK T

HEFLPN:

Remark 35 (DY(R)-PRG from LPN). Let R be a ring, and ¢, k,c,7,n € N, such that £ = rck.
Let M be a distribution on R™*™ and M & M(7°,n, R). Let

k—1
PRGLpN: (RT)Ck — Rn, (’I"l, ... ,’I"Ck) — MT . ZTH-Z'-C R @ Tetics
=0

where r; € {0,1}7 for all 1 < ¢ < ck. We assume that for appropriate choice of parameters
PRG_py is a Df (R)-PRG, where D! is the distribution returning vectors that have ezactly one
non-zero entry (chosen uniformly at random in R\{0}) in every block of length 7.

Note that Zi':ol Plgic ® -+ ® Tepic yields a random vector in R with exactly k non-zero
entries. Therefore, the above assumption corresponds to the (Beri(R)™", M, R)-dual-LPN(7¢, n)
assumption, where Berj,(R)™" is the distribution returning vectors in R™° with exactly k non-zero
entries.

Group-Based PCG for Bilinear Correlations
T AR

T group-based# 2 B FHIFM R, FAARNIWE—MEEIFERNFEAIPCG: Sanitizable Bilinear
Correlation Generator, BEX —f#AAIHSS, B HEIFEEMN: Las Vegas Homomorphic Secret
Sharing, #&—fhsharefJEHE EFRHIHSS: (D, comp)-Compressible HSS,

AEBATIAMIEBCG (Bilinear Correlation Generator) from LPN and Degree-2 CHSS:

Theorem 47. Assuming the (D(R),C)-LPN(¢.¢ — n) assumption, the above construction s a
bilinear correlation generator with seed size upper-bounded by 2 - comp(\, £).

B A BAMI & Sanitizable BCG from LPN and Compressible Las Vegas HSS.
MEMEL EHEPHICHSST,

TEHEIZEREFSHSSAIMIE: Group-Based HSS for Bilinear Functions,
X K ElGamal cryptosystem over composite-order pairing-friendly elliptic curvef—~2FH: BGN-EG
Cryptosystem,
E TR EA T LAMBGN-EGHi&ECompressible HSS: FfTixgroup-based HSSH] IAZUE AX
compressible HSS, (X—H A E X T sectionfJ#zily)
BRn A 11520:

Theorem 48. Assuming the DDH assumption over pairing-friendly elliptic curves, for any in-

tegert of polynomial size and any integer k, there exists a (Bery /4(Zt),comp(A, £, k))-compressible
(Las Vegas, secret-key, degree-2) CHSS, with

comp(\, 4, k) =k - Ve - poly(A).

SRR BERIRE:
Theorem 49. Assuming the DDH assumption over pairing-friendly ellintic curves and the
LPN((ao — 1) - n,a - n, k/(an)) assumption over an integer ring Z; of polynomial size, for a
positive constant o > 1, there exists a 0-failure SBCG with seed size k - (o - n)Y2 - poly(\).

TE X Sanitizable Bilinear Correlation Generator:

BEW: BRT ZIEIEMEER, correctnessi®iy, F Hpartiesm] AR MEIAT— Mg B AR ARIER, %08
IR AL & f5 0] PAfEsanitization phase P F— P EEREMNE R FFRX TR, FAEMA N (such
as punctured OT [BGI17] or leakage-absorbing pads [BCG+17]),
HrpsetupZ B X E A fiseed PRI EE {FRIRVER 2 (B13Epublic and secret parameters),

Definition 44 (Sanitizable Bilinear Correlation Generator). A (§-failure) sanitizable bi-

linear correlation generator over a ring R is a triple of algorithms (BCG.Setup, BCG.Gen, BCG.Expand)

with the following syntax:

— BCG.Setup(l)‘) 1s a PPT algorithm that given a security parameter A\, outputs public param-
eters pp and a secret key sk;

— BCG.Gen(sk, B) is a PPT algorithm that given secret key sk and a bilinear map B : R™ X
R™ — R™, outputs a pair of seeds (ko,ki);

— BCG.Expand(pp, o, ks, 9) is an algorithm running in time polynomial in A and 1/4 that, given
party index o € {0,1}, a seed ky, and a failure bound &, outputs a pair of vectors (x,y) €
R™ x R™, as well as a list of m confidence flags vo; € {L, T} fori=1 tom to indicate full
confidence (T) or a possibility of failure (L) for any given output.

The algorithms (BCG.Setup, BCG.Gen, BCG.Expand) should satisfy the following:

— 0-Correctness. For every i < m and every polynomial p, there is a negligible v such that
for every positive integer A, bilinear function B : R™ x R™ — R™, and failure bound é > 0,
where |B|,1/§ < p(\), we have:

Pr[(y0; = L) A (71,6 = L)] <0 +v(N),

and
Pr{((v0; =T)V (1, =T)) Ayo,i + y1,s # B(o, x1)s) < v(N),

where the probability is taken over
(pp, sk) & BCG.Setup(1*), (ko, k1) & BCG.Gen(sk, B)

and where we denote (xg,yo) < BCG.Expand(0, ko), and (x1,y1) < BCG.Expand(1,k;).

— Security. For any o € {0,1} and any (stateful, nonuniform) polynomial-time adversary A,

it holds that

_(pp,sk) & BCG.Setup(1*), B < A(pp),
Pr | (ko, k1) & BCG.Gen(sk, B), tA(xo, ki—g) =1
(To, Yo, Yo) < BCG.Expand(pp, o, k)

[(pp, sk) & BCG.Setup(1*), B < A(pp),
~Pr | (ko, k1) & BCG.Gen(sk, B), c Ao, ki—g) = 1
Ty & R vy & Bers({L, TH™

EX Las Vegas HSS:

MEREIRBERNHSS,

Definition 45 (Las Vegas Homomorphic Secret Sharing). A (2-party, secret-key, Las
Vegas é-failure) Degree-d Homomorphic Secret Sharing (HSS) scheme over a ring (R,+,-) is a
triple of PPT algorithms HSS = (HSS.Gen, HSS.Share, HSS.Eval) with the following syntax:

— HSS.Gen(1%): On input a security parameter 1%, the key generation algorithm outputs a secret
key sk and an evaluation key ek.

— HSS.Share(sk, z): Given secret key sk and secret input value x € R™, the sharing algorithm
outputs a pair of shares (sg,s1). We assume that the input length n is included in each of
(80, 81)-

— HSS.Eval(o, ek, sp, P, §): On input party index o € {0,1}, evaluation key ek,, share s, of
a size-n input, degree-d arithmetic circuit P with n input bits and m output bits, and a
failure bound §, the homomorphic evaluation algorithm outputs y, € R™, constituting party
b’s share over R of an output y € R™, as well as a confidence flag v, € {L, T} to indicate
full confidence (T) or a possibility of failure (L).

The algorithms (HSS.Gen, HSS.Share, HSS.Eval) should satisfy the following correctness and se-
curity requirements:

— Correctness:
For every polynomial p there ts a negligible v such that for every sufficiently large integer A,
mput © € R", degree-d arithmetic circuit P with input length n, and failure bound 6 > 0,
where |P|,1/8 < p(A\), we have:

Pr[(yvo=L)A (m =L)< d+v(H),

and
Pri((vo=T) V(11 =T)) Ayo +y1 # P(z)] <v(N),

where probability s taken over

(sk,ek) < HSS.Gen(1%); (so,s1) + HSS.Share(sk, z);
(Ys,7s) + HSS.Eval(o, ek, sy, P,d), o € {0,1}.

— Security: For any o € {0,1}, any pair of inputs x,x’ of the same length, the distribution en-
sembles Cy (A, z) and Cy(X, x') are computationally indistinguishable, where Cy(A,y) fory €
{z,z'} is obtained by sampling (sk, ek) < HSS.Gen(1*), sampling (sg, s1) HSS.Enc(sk,),
and outputting (ek, s,).

E X compressible HSS for a family of distributions D (CHSS):

WMARM—TD DAY, H BsharefJK/)\ is upper-bounded by comp(A,n), comp FR A
compression ratio,

Definition 46 ((D,comp)-Compressible HSS). A (2-party, secret-key, degree-d) compress-
ible homomorphic secret sharing over a ring R for a family of distributions D(R) = {Dpn(R) }nen
(such that Im(Dp(R)) C R™) with compression ratio comp, or (D(R),comp)-CHSS, is a (2-party,
secret-key, degree-d) homomorphic secret sharing over R whose correctness is relazed as follows:

— Relaxed Correctness. For every sufficiently large positive integers A,n and degree-d arith-
metic circuit P with input length n, we have:

Prlyo + y1 # P(z)] < negl(}),

where probability is taken over

(sk, ek) <— HSS.Gen(1); @ < D(R)n; (s0,51) & HSS.Share(sk, x);
yp « HSS.Eval(b, ek, sp, P), b€ {0,1},

and which satisfies an additional compressibility property:

— Compressibility. A (D,comp)-CHSS is compressible with compression ratio comp if for
every sufficiently large integers A, n, every input * € Im(Dy,), every (sk,ek) in the image
of HSS.Gen(1%), and every (sg,s1) in the image of HSS.Share(sk,x), it holds that |s,| <
comp(A,n) for o =0,1.

HLPN#Degree-2 CHSS#3Ji&PCG :

i

Let R be a ring. Let D(R) = {D(R)n}nen be a family of efficiently sampleable distributions
over R™. Let comp be a compression ratio. Let HSS = (HSS.Gen, HSS.Share, HSS.Eval) be a
(2-party secret-key) degree-2 (D(R) x D(R), comp)-CHSS. We describe below a construction of
a bilinear correlation generator over R. Note that any bilinear function B : R"® x R"™ — R™ can
be fully described by a list of m matrices By - -+ B, with B; € R™*"™ such that for any inputs
(x,2') € R" x R"™, B(z,x') = (£7B;x')i<m. Let a be a positive constant.

Fgis:

— BCG.Setup(1?) : output (pp = ek, sk) & HSS.Gen(1?).

— BCG.Gen(sk, B) : let n denote the input size of B and let £ < an. Let M < C(¢{,£ —n,R)
be the encoding matrix of a linear code, and let N € R™** denote its parity check matrix
(i.e., N is the matrix over R™*¢ which satisfies NM = 0). Pick two vectors (zg, z1) ¢+
D¢(R) x Dg(R) and let ro (resp. r1) denote the random coin used to sample zg (resp. 2z1).
Run (s, s1) < HSS.Share(sk, (zg, 21)). Output ks < (74, s,) for o =0, 1.

— BCG.Expand(pp, o, ko) : parse k, as (74, S¢) and reconstruct z, from r, (using the sampling
procedure of D,,(R)). Define the bilinear function P : R x R — R™ as follows: on input
(z,x') € Rt x R, P outputs (xT - B! - ©');<m, where B! is defined as B} < NTB;N. Set
x, + Nz,. Compute y, < HSS.Eval(o, pp, s5, P), and output (z,,y,).

E IR RRIAAIIERR -

Theorem 47. Assuming the (D(R). C)-LPN(4.¢ — n) assumption, the above construction is a
bilinear correlation generator with seed size upper-bounded by 2 - comp(\, £).

C.5.1 Correctness.

As (zg, z1) is sampled from Dy(R) x Dy(R), the relaxed correctness property of the CHSS applies,
and we get:

yo + y1 = HSS.Eval(0, ek, so, P) + HSS.Eval(1, ek, s1, P)
= (2§ Biz1)i<m = ((N20)"Bi(Nz21))i<m
= (k) Bix1)i<m = B(xo, x1).

C.5.2 Security.

Let A be a (stateful, nonuniform) PPT adversary, and let o be a bit. We proceed through a
sequence of game.

— Game Gy. In this game, we run (pp,sk) <& BCG.Setup(1?*), set B « A(pp), (ko, ki) &
BCG.Gen(sk, B), and
(%5, Yo) + BCG.Expand(pp, 7, k).

This corresponds to the first experiment in the security definition of bilinear correlation
generators. Let by be the output of A(x,,ki_g).

— Game G;. In this game, we modify the execution of BCG.Gen as follows: instead of computing
(s0,81) < HSS.Share(sk, (2g, z1)), we set (sg,s1) < HSS.Share(sk,0%). Let b; denote the
output of A in this game. By the security property of the CHSS, the distribution of (ek, s1_4)
in this game is computationally indistinguishable from the distribution of (ek, s1—5) in Go,
hence we have Pr[by # b1] = negl(}).

— Game (2. In this game, we modify the execution of BCG.Expand as follows: instead of
computing z, as Nz,, we pick ¢, & R™. Note that kj_, does not depend on z,, hence
distinguishing between the games G, and G; amounts to distinguishing Nz, from a random
vector over R"™, where z, is drawn from Dy(R). Note also that Nz, = N(Ma + z,) for
any vector a € R™ (as NM = 0). Therefore, this amounts to distinguishing Ma + z, from
random, for an arbitrary secret vector @ € R", and a noise vector z, sampled from D,(R),
which is infeasible under the (D(R), C) — LPN(4, £ — n) assumption. Therefore, denoting b,
the output of A in Go, we have Pr[b; # bg] = negl(}A).

— Game Gs3. In this game, we revert the change made in G; and compute again (sg,s1) as
HSS.Share(sk, (29, 21)). Let b3 denote the output of A in this game. By the security property
of the CHSS, we have Pr[by # b3] = negl(A). Furthermore, this game is exactly the second
experiment in the security definition of a BCG, which concludes the proof.

C.5.3 Efficiency.

The seed size of the BCG is |ks| = |rs| + |So|- By the compressibility of the CHSS, |sy| <
comp(A, £). Furthermore, by the restricted correctness of the CHSS, it must hold that |r,| <
|s¢| < comp(A, £) (otherwise, using HSS.Share and HSS.Eval would allow to compress samples
from Dy(R) below their amount of entropy, which is impossible). Hence, we get |k,| < 2 -
comp(A, £).

HLPN#fICompressible Las Vegas HSS#43i&Sanitizable BCG:

BFEMEE—#, REIE—NNXZ): IRBENX, Las Vegas HSSEMNF BN H B —NEAE
W3, Tsanitizable BCGXFEMEEEHE—Mag (AAENNEHREEIRVMARGERE) , X+
XIRBARRXR:

This is essentially a syntactic difference: existing construction of Las Vegas HSS can easily be
modified to output a flag for each output bit. In the formal construction of sanitizable BCG from
Las Vegas HSS, it suffices to apply the Las Vegas HSS independently for each functions f;
outputting the ith bit of the target bilinear correlation, to get independent failure flags for each

output bit.

Group-Based HSS for Bilinear Functions:

Below, we briefly recall the HSS scheme of [BGl16a], taking into account the optimizations for bilinear
functions of [BCG+17].

LS

Notations. For vectors x; over a multiplicative group, we denote by [], «; their component-wise
product. Given a multiplicative group G of order g, a length-n vector g = (g1, ,9n) € G,
and a length-n vector of exponents x = (x1,"- ,xy) € Zqg, we denote x e g the “scalar product
in the exponent™ x e g = [[", ¢*; for any g € G, g* denotes (¢**,--- , g"").

B, WTARERTER, B/lfencoding:

Let g be a large prime, and let G be a hard-discrete-log group of order q. Let g denote a generator
of G. For any = € Z,, we consider the following 3 types of two-party encodings:

LEVEL 1: “Encryption.” For z € Z,, we let [z] denote g*, and [z], denote ([r],[r - s+ z]) for a
uniformly random r € Zg, which corresponds to an ElGamal encryption of x with a secret key
s € Zq. All level-1 encodings are known to both parties. We let sk < (s, —1).

LEVEL 2: “Additive shares.” Let (x) denote a pair of shares g, x1 € Z; such that o = z1 + z,
where each share is held by a different party. We let (), denote ((—s - z), (z)) = sk-(z) € (Z2)?,
namely each party holds one share of (—s-x) and one share of (z). Note that both types of
encodings are additively homomorphic over Z,, namely given encodings of z and z’ the parties
can locally compute a valid encoding of = + 2.

LEVEL 3: “Multiplicative shares.” Let {x} denote a pair of shares xp,z; € G such that the
difference between their discrete logarithms is z. That is, g = z1 - ¢*.

mrE, EAF BlocallyitE L& EREL, R T itEdegree-2 polynomials, HAIFEITERE, HEUT
(2£1{blpairing-based encryption) :

of xy. To this end, we consider the following two types of operations, performed locally by the
two parties:

1. Pair([z],,{y)s) — {zy}. This pairing operation exploits the fact that the decryption of an
ElGamal ciphertext [z], is computed as a scalar product in the exponent: g° = sk e [z]..
Therefore, Pair computes (y)) e[z], = (y)e(ske[z],) = {zy}. Note that we consider ElGamal
ciphertexts for the sake of concreteness only; any encryption scheme whose decryption follows
a similar “scalar product in the exponent” structure would suffice.

2. Convert({z},d) — (z), with failure bound é. The implementation of Convert is also given
an upper bound M on the “payload” z (M = 1 by default), and its expected running time
grows linearly with M /§. We omit M from the following notation.

(Convert&EiATEP54 L E0)

EPairflConvertE S e RMFEIMUItTEE, B2H E A Elevel1zilevel2fencoding, AfTARBEMINZ
%, TEEESEIR:

Given the Pair and Convert algorithms, the multiplication algorithm Mult sequentially exe-
cutes these two operations: Mult([z]., (v).,d) — (xy), with error 6. Note that the output of the
procedure is not a level 1 or a level 2 encoding. Therefore, this d-failure HSS allows to evaluate
arbitrary bilinear functions B on vectors (x,y) (encodings of level 1 and 2, as well as addi-
tive shares, being additively homomorphic) but does not generalize immediately to functions of
higher degree; generalizations to branching programs are presented in [BGI16a,BGI17,BCG*17|,
but are several orders of magnitude less efficient.

The BGN-EG Cryptosystem

BGN 2 — & TR # L A#HIpairing-based &, AJUEISITE XS,
BAJFRYZ FreemaniYhi 25 [Fre10]AI B L AR o

The Boneh-Goh-Nissim cryptosystem (BGN) was introduced in [BGNO5]. It is a variant of the
ElGamal cryptosystem over composite-order pairing-friendly elliptic curve, which allows to
homomorphically compute any degree-2 polynomial on encrypted plaintexts, provided that the

output is of polynomial size (as decryption requires computing a discrete logarithm).
BFmMBEEE:
i3 pUKE$

Let BilinearGen denote a PPT algorithm which, on input 1*, outputs a prime g, the description
of three cyclic groups (G1, G2, G;), elements (g1, g2) € G1 X Go, and a map e such that

— the cyclic groups have the same order ¢ = g(\);

— the map e : G; X G2 — Gy is an efficiently computable non-degenerate bilinear map, i.e.,
Y(u,v) € Gy x Gg and (a,b) € Z,, e(u®,v°) = e(u,v)?®;

— g; generates G; for i € {1,2} (and g; < e(g1,92) generates Gy).

Note that this captures groups equipped with an asymmetric pairing. To simplify notations, given
vectors ¢ € G,y € G, we will write e(x,y) to denote (e(z;,y;))i j<n. When it happens that
the components of the vector are vectors themselves (e.g. if &, y are vectors of ciphertexts, each
ciphertext consisting of several group elements), we apply the notation recursively: e(x,y) =

(e(xi,yj))i,j<n and for every i, j, e(xs, y;) = (e(xii, yji0))i -

BT E:
We outline below our simplified variant of Freeman’s adaptation of the BGN cryptosystem,
which we denote BGN-EG.

— BGN-EG.Setup(1*) : output pp = (¢, G1, G2, Gy, g1, g2, €) < BilinearGen(1*).

— BGN-EG.KeyGen(pp) : pick (s1,s2) & Z2, compute (h1,ha) < (97", 952). Set sk; «— (s5,—1)
for i = 1,2, and sk; = (s1 - 89, —81, —S2, 1). Output pk < (pp, h1, h2) and sk < (ski, sk, sky).

— BGN-EG.Enc;(pk,m;r) : on input the public key pk, a message m € Z,;, and a random coin
r € Zq, output ¢; < (g7, h]g") (this corresponds to encryption over G;).

— BGN-EG.Dec;(sk, ¢;): on input the secret key sk and a ciphertext ¢;, compute ¢ sk; ® ¢;
and output m < dlog,, (c).

EffE. 2. GEES. MIEMRERS:

Correctness follows by inspection; security reduces to the decisional Diffie-Hellman assumption
(DDH) in G; and Gg. It is easy to see that the scheme is additively homomorphic over each
of G; and Gg. Furthermore, given an encryption ¢; of a message m; over G; and an encryp-
tion co of a message mo over (G2, one can homomorphically construct an encryption of mims
over G, as follows: compute ¢; < e(cy,c2). The resulting ciphertext has four components and
remains additively homomorphic over G; (addition of plaintext is computed by component-wise
multiplication). Decryption of a ciphertext over G; is performed by computing ¢ < sk; ® ¢;, and
outputting m < dlog,, (c), where g; = e(g1, g2).

Compressible HSS from BGN-EG:

EMALEEFEER, (with sparse structure) , #A/Slevel1#llevel2fJencoding®] BAE4E

We now show how the group-based HSS of [BGI16a, BGI17, BCG*17] can be modified to get a
compressible HSS. In this section, we will consider compressible HSS over a small (polynomial-
size) ring Z; for inputs drawn from the Bernouilli distribution Ber,(Z;) for some rate r (see
Section 3.3); that is, we will consider inputs with a sparse structure, and show how level 1 and
level 2 encodings of such inputs can be compressed. Let (G1, G2, G;) denote three cyclic groups
of order ¢, and let e : G; x Gy — G; denote a pairing. Observe that the ciphertexts in the
target group G; of BGN-EG have a suitable structure to be used as level-1 encodings in the HSS
scheme, as decryption of a ciphertext over G; is performed via a scalar product in the exponent.

E FERIBGN-EN, LIFE;ERYadditive share:

We modify the HSS scheme of the previous section as follows: a level 1 encoding [z], of x is
a BGN-EG encryption of = in the target group G¢. A level 2 encoding (y), of a message y
is a 4-tuple sk; - (y). The Pair algorithm, on input a level 1 encoding [z], and level 2 shares
(y)g, outputs (y)g. @ [].; a level 3 encoding of a message z is a multiplicative share over
Gy of gF; it follows that Pair([z]g. , (y)«) = {zy}. Then, the parties can apply the optimized
Convert procedure of [DKK18| to obtain additive shares of zy. The security of this modified
HSS scheme immediatly reduces to the DDH assumption in G and Gsg, by the same security
analysis as for the HSS of [BGI16a] (note that, because we restrict our attention to HSS for

IFlevel1BYESE

C.8.2 Compressing Level 1 Encodings under BGN-EG.

The modified scheme suggests a natural strategy to reduce the size of level 1 encodings when
the input is sparse, by exploiting the homomorphic properties of BGN-EG ciphertexts. Let m
be a length-£ vector over Zg4, which has at most k£ non-zero coordinates. We assume ¢ to be a
square for simplicity. The compression method works as follows: arrange the coordinates of m in
a V¢ x /¢ matrix M. Decompose M into Zle M;, where each matrix M; has a single non-zero
coordinate. For i = 1 to k, let (us,v;) € [V/¥] x [v/£] denote the coordinate of the non-zero entry
of Mz

Pick 2v/¢ elements (ctij5 Bij) j< vz Of Zq as follows: for each pair (u,v) # (ui, vs), set oy =
Biw =0, and set oy, = 1, Biv; = Mi|y, v;- Observe that, by construction, it holds that M;|, , =
Qi - Biw for any pair (u,v) € [V/£] x [V/£]. Therefore, we have for any (u,v) € [V¥] x [VZ):

k
U — E (07T /Bi,v-
i=1

This shows that for any vector m with at most k non-zero entries, one can create a level 1
encoding of m as follows: compute the (ou, Biu);<p o< /7 @s above, and set the encoding of m

to be k-+v/¢ BGN-EG encryptions of (0 u)iw over Gy, and k - v/ BGN-EG encryptions of (Biw)iu
over Go. Using the homomorphic properties of BGN-EG, any party can then locally reconstruct
a BGN-EG encryption of m = (Zle &y - Biw)uw over Gy The size of the compressed encoding
is 2k - V£ - (|G1| + |Gg|). Note that this strategy corresponds exactly to using the LPN-based
PRG introduced in Section 4.4 to stretch the encoded seed.

M

level2 By E 45

C.8.3 Compressing Level 2 Encodings using F'SS.

We now turn our attention to level 2 encodings (m)),, = ((s152 - m), (—s1 - m),(—s2-m), (m)).
Note that if m is a sparse vector, so are s;s3 - m, —s; - m, and —s3 - m. We therefore focus
on compressing additive shares of arbitrary sparse vectors over Z,;. As was observed recently
in [BCGI18], this type of correlation can be efficiently compressed using function secret sharing
for multi-point functions (MPFSS). We elaborate below.

Let MPFSS = (MPFSS.Gen, MPFSS.Eval, MPFSS.FullEval) be a multi-point function se-
cret sharing. On input a vector m € Zg with HW (m) < k, let proj,, : [¢] — Z, be the
function which, on input i € [], outputs the i'th coordinate of m. Note that proj,, is an
(¢, k)-multi-point function over Z,. To generate compressed additive shares of m, compute
(Ko, K1) & MPFSS.Gen(1*, proj,,,). To decompress the string, each party with input K, com-
putes MPFSS.FullEval(o, K,;), obtaining additive shares of (proj,,(%))icg = m. Correctness
immediately follows from the correctness of the underlying MPFSS. Regarding security, we
must show that for any pair (m,m’) (with HW (m),HW (m’) < k) and any o € {0,1},
the distribution of (ek,,$,) obtained by sampling (sk, (eko,ek;)) < HSS.Gen(1%), sampling
(80, 1) < HSS.Enc(sk,m) or (sg, s1) < HSS.Enc(sk,m’), and outputting (ek,, sy), are compu-
tationally indistinguishable. This immediately follows from the fact that, by the MPFSS security,
there is a simulator which (given Leak(proj,,,) = Leak(proj,,), and no further information about
m,m') can output a simulated key s, = K, whose distribution is indistinguishable from an
honestly generated key.

Using the PRG-based MPFSS of [BGI16b, BCGI18], the size of a compressed encoding using
this method is equal to k - ([log¢] - (A + 2) + A + [log q]). We refer the reader to [BCGI18| for
further discussions on this method and optimizations of MPFSS tailored to this application.

HZAMLEER:

5%DDH-based CHSS:

Theorem 48. Assuming the DDH assumption over pairing-friendly elliptic curves, for any in-
teger t of polynomial size and any integer k, there exists a (Bery ,(Zt),comp(, £, k))-compressible
(Las Vegas, secret-key, degree-2) CHSS, with

comp(\, £, k) = k - V£ - poly()).

For self-containement, we describe below the full CHSS. It has two sharing algorithms, corre-
sponding to level 1 and level 2 shares respectively. The evaluation procedure allows to compute
(shares of) any bilinear function B(x,y) where @ is level-1-shared and y is level-2-shares between
the parties.

— HSS.Gen(1*): run pp = (¢, G1,Ga, Gy, g1, g2, €) <& BGN-EG.Setup(1?), as well as (pk, sk)
BGN-EG.KeyGen(pp). Compute g < e(g1,g2). Output ek < (pp, pk, g) and sk.

— HSS.Share; (sk,m): let k denote an upper bound on the sparsity of m, and let ¢ denote
the length of m. Let (ay, 3;)i<x denote the decomposition of m in 2k length-v/¢ vectors,
as described in Section C.8. Compute, for i = 1 to k, (¢;,d;) & (BGN-EG.Ency(pk, a;),
BGN-EG.Enca(pk, 3;)) and output sharey = share; = (c¢;, d;)i<k.

— HSS.Sharey(sk, m): let k denote an upper bound on the sparsity of m, and let £ denote the
length of m. Parse sk as (ski,sko, sk;) and parse sk; as (s;, —1) for i = 1,2. Let proj,, ¢
(Projs, syms PrO)_s;m» PrOj _,ym» PrOj,,), Where proj is defined as in Section C.8.3. Compute

(Ko, K1) < MPFSS.Gen(1*, proj,,, «)-

Return share < K and share] < K.

— HSS.Eval(o, ek, share,, sharel, B, §): On input party index o € {0, 1}, evaluation key ek, level
1 share share, of a size-£ input, level 2 share share] of a size-¢ input, a bilinear function
B : Z¢ x 7% — 7 with B(x,y) = (22: bij,0 - TiYj)o<m, and failure probability bound § > 0:

e Parse share, as (c;, d;)i<k, and compute £ ciphertexts (e1,- - ,es) Hle e(c;, d;).

e Parse share/ as K,. Compute K’ < MPFSS.FullEval(c, K). Note that K’ is a vector
of £ length-4 vectors K ;.

e For every (i,j) € [{]?, r; j + Pair(e;, K,)=K, ee;.

e For 0 =1 tom, let hy + (bi,j,a)z',j) (Ti,j)i,j-

e Output (Convert(h;,d/m))i<m, where Convert is run in base g over G.

BRA\Z - ERLPN-based BCG, 15%I:
Theorem 49. Assuming the DDH assumption over pairing-friendly elliptic curves and the
LPN((a« — 1) - n, - n,k/(an)) assumption over an integer ring Z: of polynomial size, for a
positive constant o > 1, there exists a 6-failure SBCG with seed size k - (o - n)Y/? - poly(X).

PCG from Lattices

X—E oY REERIREE R 2 M correlation,
ER—1EIKIER, FH{1ZEauthenticated Beaver triples,

In this section we give a lattice-based PCG construction for any family of polynomials of
bounded degree over large finite fields, extending the results of the previous sections to more
general correlations. As a use-case we consider the generation of authenticated Beaver triples

{alyauthenticated Beaver triple? :

[BCG+19b]:
{(a,b,ab, ac, ba, aba) | a,b € Zy}

for some fixed MAC o € 7
[BCGI20]:

Secret-sharing with M ACs. We use authenticated secret-sharing based on SPDZ MACs
between n parties, where a secret-sharing of x € Z, is defined as:

[[37]] = (a%xiamw,i)?:l such that Z.’l;z =z, me,i = - Zai

Note that the MAC key shares «; are fixed for every shared z. The MAC shares m, ; are used
to prevent a sharing from being opened incorrectly, via a MAC check procedure from [DKL*13].
An authenticated multiplication triple is a tuple of random sharings ([z], [y], [2]), where =,y <&
Zp and z = x - y. Our PCG outputs a single multiplication triple over the ring R,, for n = 2
parties, together with additive shares of the MAC key a € Z,. When using the fully-reducible

variant of ring-LPN, this is equivalent to N triples over F,a (where for suitably chosen p we can
have d = 1).

(B : FRAXA TN X ERERITIEHZAZ— T correlation? X alphaZ R~ Eshare?)

ETAIPRGHIHSS:

The assumptions we build on are the sparse MQ-assumption discussed in Section 7.1 and the
ring-version of the learning with errors assumption

Definition 53 (Learning With Errors over Rings (RLWE)). Let N € N be a power of
two q € N with ¢ > 2, R = Z[X]/(XY + 1) and R, = R/(qR). Let x be an error distribution
over R. Let s < x. The RLIWEy 4, -assumption states that the following two distributions over
Rg are computationally indistinguishable:

— Oy,s: Output (a,b) where a < Rg,e < x andb=a-s+e
— U: Output (a,u) + R2

*XFBGV2 ((Leveled) fully homomorphic encryption without bootstrapping.) :

Abstract

We present a novel approach to fully homomorphic encryption (FHE) that dramatically
improves performance and bases security on weaker assumptions. A central conceptual contri-
bution in our work is a new way of constructing leveled fully homomorphic encryption schemes
(capable of evaluating arbitrary polynomial-size circuits), without Gentry’s bootstrapping proce-
dure.

Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or
Ring LWE (RLWE) problems that have 2* security against known attacks. We construct:

e A leveled FHE scheme that can evaluate depth-L arithmetic circuits (composed of fan-in 2
gates) using O(\-L?) per-gate computation. That is, the computation is quasi-linear in the
security parameter. Security is based on RLWE for an approximation factor exponential
in L. This construction does not use the bootstrapping procedure.

e A leveled FHE scheme that can evaluate depth-L arithmetic circuits (composed of fan-
in 2 gates) using O()\?) per-gate computation, which is independent of L. Security is
based on RLWE for quasi-polynomial factors. This construction uses bootstrapping as an
optimization.

We obtain similar results for LWE, but with worse performance. All previous (leveled) FHE
schemes required a per-gate computation of Q(A3-5), and all of them relied on sub-exponential
hardness assumptions.

HALWEFIRLWERINT 43 :
The learning with errors (LWE) problem was introduced by Regev [Reg05]. It is defined as follows.

Definition 5 (LWE). For security parameter A, let n = n()) be an integer dimension, let ¢ = q(\) >
2 be an integer, and let x = x(\) be a distribution over Z. The LWE,, 4, problem is to distinguish
the following two distributions: In the first distribution, one samples (a;, b;) uniformly from Z7+1.
In the second distribution, one first draws s < Z; uniformly and then samples (a;,b;) € Zgﬁ by
sampling a; < Zy uniformly, e; < X, and setting b; = (a,s) +e;. The LWE, 4, assumption is that
the LWE,, 4 problem is infeasible.

Regev [Reg05] proved that for certain moduli ¢ and Gaussian error distributions x, the LWE,, 4 ,,
assumption is true as long as certain worst-case lattice problems are hard to solve using a quantum
algorithm. We state this result using the terminology of B-bounded distributions, which is a
distribution over the integers where the magnitude of a sample is bounded with high probability.
A definition follows.

Definition 6 (B-bounded distributions). A distribution ensemble {xn}nen, supported over the
integers, is called B-bounded if
Pr [le] > B] = negl(n) .

e<—Xn

We can now state Regev’s worst-case to average-case reduction for LWE.

Theorem 2 (Regev [Reg05]). For any integer dimension m, prime integer ¢ = q(n), and B =
B(n) > 2n, there is an efficiently samplable B-bounded distribution x such that if there exists
an efficient (possibly quantum) algorithm that solves LWE,, 4 ., then there is an efficient quantum
algorithm for solving O(qn'®/ B)-approzimate worst-case SIVP and gapSVP.

Peikert [Pei09] de-quantized Regev’s results to some extent — that is, he showed the LWE,, , ,
assumption is true as long as certain worst-case lattice problems are hard to solve using a classical
algorithm. (See [Pei09] for a precise statement of these results.)

Applebaum et al. [ACPS09] showed that if LWE is hard for the above distribution of s, then it
is also hard when s’s coefficients are sampled according to the noise distribution Y.

2.4 The Ring Learning with Errors (RLWE) Problem

The ring learning with errors (RLWE) problem was introduced by Lyubaskevsky, Peikert and Regev
[LPR10]. We will use an simplified special-case version of the problem that is easier to work with
[Regl0, BV1lal.

Definition 7 (RLWE). For security parameter X, let f(z) = 2¢ + 1 where d = d(\) is a power of
2. Let ¢ = q(A) > 2 be an integer. Let R = Z[z]/(f(x)) and let Ry = R/qR. Let x = x(\) be
a distribution over R. The RLWE, 4, problem is to distinguish the following two distributions: In
the first distribution, one samples (a;,b;) uniformly from Rg. In the second distribution, one first
draws s <— R, uniformly and then samples (a;,b;) € Rg by sampling a; < R, uniformly, e; < X,
and setting b; = a; - s + e;. The RIWE, 4, assumption is that the RLWEy 4, problem is infeasible.

The RLWE problem is useful, because the well-established shortest vector problem (SVP) over
ideal lattices can be reduced to it, specifically:

Theorem 3 (Lyubashevsky-Peikert-Regev [LPR10]). For any d that is a power of 2, ring R =
Z[z)/(z® + 1), prime integer ¢ = q(d) = 1 mod d, and B = w(y/dlogd), there is an efficiently
samplable distribution x that outputs elements of R of length at most B with overwhelming proba-
bility, such that if there exists an efficient algorithm that solves RILWEg , ., then there is an efficient
quantum algorithm for solving d*() - (¢/ B)-approximate worst-case SVP for ideal lattices over R.

Typically, to use RLWE with a cryptosystem, one chooses the noise distribution x according
to a Gaussian distribution, where vectors sampled according to this distribution have length only
poly(d) with overwhelming probability. This Gaussian distribution may need to be “ellipsoidal” for
certain reductions to go through [LPR10]. It has been shown for RLWE that one can equivalently
assume that s is alternatively sampled from the noise distribution x [LPR10].

PCG from Somewhat Homomorphic Encryption

ER BREMN—TXIES TR EZsomewhat homomorphic encryption®] IA#iE HHSS, AEEMA
ZHIFIPRG+HSS /%18

As observed in [DHRW16, BKS19], from a somewhat homomorphic encryption scheme which
supports distributed decryption one can construct a homomorphic secret sharing scheme.

TE X Depth-d Somewhat Homomorphic Encryption with Distributed Decryption:

Definition 54 (Depth-d Somewhat Homomorphic Encryption w/ Distributed De-
cryption). Let PKE := (PKE.Gen, PKE.Enc, PKE.Dec) be an IND-CPA secure public-key encryp-
tion scheme. We say that PKE is a secure depth-d public-key encryption scheme with distributed
decryption if it further satisfies the following properties:

— Distributed decryption: Let R := Z[X]/(X™ +1), for N a power of two, k € N and the secret
key space of PKE contained in Ry. We say PKE supports distributed decryption, if there exists

an algorithm DDec such that for (pk,sk) < PKE.Gen(1%), skg & Ry, sk = sk—skg, m € R,

and ¢ & Enc(pk, m) it holds DDec(skg, ¢) + DDec(ski, ¢) = m with overwhelming probability.

— Depth-d somewhat homomorphic encryption: There exists a procedure PKE.Eval such that
for any function f: R™ — R™ that can be evaluated by a circuit of depth at most d, for any
A € N, for any (pk,sk) in the image of Gen(1*), for all messages my,...,m, € Ry, for all
ciphertexts ¢y, . ..cy in the image of PKE.Enc(pk,my), ..., PKE.Enc(pk,my) and for any c
in the image of PKE.Eval(f, (c1,...,¢n)) it holds

PKE.Dec(sk,c) = f(mq,...,mp).

Notation. We generalize Alg € {Enc,DDec, Eval} to vectors of inputs in a straightforward
way: Alg is run independently on each entry of the vector (with independent random coins if
Alg is randomized).

ERPRG+HSS /AL, FfEEIprotocolFl4E1e:

PCG.Gen(1?) :

— Generate the encryption keys. Generate keys (pk, sk) < PKE.Gen(1*). Choose sko ¢- R% and
set sky := sk — sko.
— Choose and encrypt a PRG-seed. Choose r + D* (Rp). Compute

¢” = PKE.Enc(pk,r) € (RE)".

— Output ko := (sko, "), ki := (ski,€").

PCG.Expand(a, ke, f) :

— Parse k, =: (sks, €").
— Evaluate f o PRG on the encrypted seed. Compute

c” < PKE.Eval(f o PRG,c") € (R5)™.
— Decrypt the result. Decrypt and output

RY < PKE.DDec(sk,,c") € R

Fig.9. PCG for the family of degree-d functions from degree-c D*-PRG PRG and depth-[logcd] somewhat
homomorphic encryption scheme PKE.

Theorem 55. Let R be a ring, £,n,p,q,m € N, PRG be a degree-c D¢*-PRG PRG: ’Rf, — Ry and
PKE = (PKE.Gen, PKE.Enc,PKE.Dec) be a depth-[logcd| somewhat homomorphic encryption
scheme with message space Ry and secret key space contained in Ry . If PKE additionally support
distributed decryption, then the PCG PCG = (PCG.Setup, PCG.Gen, PCG.Expand) from Figure 9
is a PCG for the family of functions F := {f: Ry — Ry | f is of degree at most d}.

REERM, FAIRFHABGV encryption scheme [BGV12]153I:

Corollary 57. Instantiating the PRG in the construction of Figure 9 with the degree-2 p-
sparse PRG PRGyq : Zf) — Zy, from Definition 34 and the somewhat homomorphic encryp-
tion scheme with the BGV encryption scheme of Brakerski et al. [BGV12] (chosing parameters
R = Z[X]/(XN +1),p,q and error distribution x s.t. evaluation of at least degree-5 functions/

depth-3 circuits is supported), we obtain a PCG for the generation of authenticated Beaver triples,
assuming p-sparse M (£2, n,Rp)-MQ and RLWEN 4 .

e

SLER{EABeaver Triplefd, H1EE— XL —AMEBeaver triples (?) Filllattice-based{R
practical,

AT IRENIX BH9EA TR BA{E A ciphertext packing iz R

Remark 58 (Ciphertext packing, [SV14]). Let p be a prime and N € N a power of 2, such that
the polynomial X%~ + 1 splits over Zy, into pairwise different degree-1 polynomials. If R :=
Z[X]/(XN + 1) (similar for general cyclotomic polynomials), this implies R, = (Z,)" and
enables “packing” N plaintexts into one ciphertext (by encrypting ¥(z) for some z € Z;,V , Where

¥: (Zp)N — R,). In the following we will refer to R, as coefficient representation, and to (Z,)N
as CRT representation.

Thus, each ciphertext has room to hold N encryptions. We first consider “naive” ciphertext
packing: We start with £ encryptions of each N seeds r € Zf;, perform the expansion homomor-
phically on the ciphertexts (which corresponds to expanding feach of the N seeds in parallel).
This gives an output of nN correlated tuples in total.

BEFNIDTRE (communicationflcomputation) :
In the following we estimate efficiency of the PCG construction given in Corollary 57 with the
above described ciphertext packing. We use the parameters given in [CS16] to support depth-4

homomorphic operations (as an upper bound) and plaintext space modulus ~ 228 listed in the
following. Here, by Ty we denote the time required for multiplication over R, and by T¢ the
time for multiplication of a Z, element with an element in R,.

— Dimension of R (over Z): N ~ 13688 (we use N = 214)
— Cliphertext modulus: logq =~ 750 (we use log q = 744)

— Parameter for key switching: logT ~ 140

— Cost of key switching: Tks =~ 2(logq/logT)T¢

— Cost of multiplication on ciphertexts: Tgya =~ 4Ty + Tks
— Cost of multiplication of constant with ciphertext: ~ 2T¢
— Cost of encryption: Tgne =~ 2(Ty + T¢)

— Cost of decryption: Tpec =~ 2T

For MQ we use parameters n = £2/24 and p = 100. Further, we set £ = c-2° for ¢ > 1.
Later we will see that chosing ¢ = 1 we surpass the breakeven point. In other words, £ = 2°
is the smallest choice where the total output size of the correlation generator exceeds the seed-
length. Our runtime estimates are based on NFLLib [ABG16]: A multiplication over R, requires
time ~ 9.54 ms and a multiplication over R, X Z, requires time ~ 0.55 ms. For an overview
of estimated setup computation and communication complexity (i.e. time and communication
required for jointly generating the seed) and estimated expansion times for the described PCG
construction and variants we refer to Table 2 in the main body.

Distributed seed generation: We first describe the setup of the keys and MAC « € Z,, which can
be reused across many instances. First, the parties jointly generate secret key shares (sko, ski)
and the corresponding public key pk, e.g. by generating secret keys according to a suitable
distribution and exchanging shares as well as the corresponding public keys. Next, both parties
choose a MAC share a, <& Zy, and define a, € Zi,v to be the vector of all a, entries. Next, the
parties each compute and exchange c?(®) := Enc(pk, ¥(a,)), and set ¢?(®) := ¢¥(@0) 4 ¥(e1),

To generate encryptions of N seeds a and b in Zf,, both parties repeat 2¢ times: Sample
an element R, at random (corresponding to N random Z, elements), and as for generating an
encryption of the MAC key, exchange and add up the corresponding encryption.

As computation and communication is dominated by the last step, a rough estimate in
the semi-honest setting are as follows: Generating 2¢ encryptions takes about c¢ - 20 seconds
of computation and exchanging 2¢ ciphertexts (each of size 2N log g bits) requires ¢ - 3 GB of
communication (per party). We estimate that in the dishonest setting communication complexity
would roughly double.

Ezpansion rate: We expand 2¢N elements in Z, to n/N shared authenticated Beaver triples in
Zy (each consisting of 6 Z, elements), which corresponds to expanding roughly c -3 GB of seed
material to authenticated Beaver triples of total size c? - 17 GB.

Computational efficiency of expansion: The computational costs add up as follows.

— FEzxpanding the seed: The complexity to evaluate the PRG homomorphically on 24 ciphertexts

sums up to 2¢? ciphertext multiplications and 4np multiplications of a constant with a
ciphertext.

— Computing the triples: Evaluation of f, requires 4n ciphertexted multiplications.
— Obtaining the output shares: To obtain the output we have to decrypt n6 ciphertexts.

Altogether, the costs sum up to
~ 4npTo + 4(20% + Tn)Tas + 2(£2 + 2n)Tks.

This gives a total computation time of around c? - 8.0 hours, which corresponds to an amortized
computations time of roughly 0.16 ms per authenticated Beaver triple.

Multi-Party PCG for Bilinear Correlations

5 —ZEbilinear correlationfy9i&, BIAZEREIRZFCR,

In this section, we construct multi-party PCGs for a useful class of bilinear correlations,
capturing M-party OT, M-party vector OLE, M-party Beaver triples, and more.

LT —MM2-partyBIM-partyty 7575, (BREEENE, EikE ‘programmability”$5i, KE=E1A
MR EERBMATBBERENE,

Our construction approach provides a semi-generic transformation from any PCG for the
corresponding 2-party bilinear correlation that satisfies an additional “programmability” property.

Roughly, this property requires a way of “reusing” inputs across instances without compromising
security. The M -party construction will leverage this structure by executing M (M — 1)
pairwise instances of the underlying 2-party PCG, for all the “cross-terms.”

157089, AR, %X programmabilityfyPCGH :
— M-party VOLE: From lightweight DPF and LPN, leveraging the 2-party VOLE generator of [BCGI138].

— M-party OT / Beaver triple: From group-based or lattice-based HSS, leveraging our 2-party PCGs
from the previous sections.

2-party simple bilinear correlationiE X :

Definition 37 (Simple Bilinear Correlation: 2-party). A 2-party correlation C is a simple
bilinear relation if there exists Abelian groups G1,Gs, Gr and a bilinear map e: G; X Go — Gr
for which C is a distribution over (G1,Gr) X (G2 X Gr) of the form

C= {((aac)7(bad)) | a<_Glab<_G2ac<_GTad:e(aab)+c}-

Note that the groups G and map e are implicitly parametrized by .

ERSEREAFRFMCR:
This captures, for example, Vector OLE (with G; = Gy = F” and e: F* x F — F" by
e(u,z) = zu), n-OLE (with G; = G2 = Gr = F” and e: F* x F* — F” by e(u,y) = u * v
componentwise multiplication), and String OT and n-OT as special cases for F = Fs.

AN

multi-party R E X

Definition 38 (Simple Bilinear Correlation: M-party). For simple bilinear 2-party cor-
relation Co specified by e: G; x Go — G we define the corresponding M -party correlation Cyy
by
a; &Gl,bi <$—(G12 Vi € [M], C; > Vi € [M— 1], }

cM=e (sz\il L Bl bi) B

Cu = {(ai, bis Ci)ie[M]

Ezxzample 89. Useful specific examples:

— CyvoLe: Each party holds random (u;, z;,v;) € F™ x F x F™
s.b. (o @i) Qo wi) = (X2 vi)
— Cur-oLe: Each party holds random (u;, v;, w;) € F™ x F™ x F»

st. O w;) * (O v;) = (O, w;) (componentwise)

Programmability |4 TRV E X

Definition 40 (Programmability). We will say that a PCG PCG = (PCG.Gen, PCG.Expand)
for simple bilinear 2-party correlation Co (specified by e: G1 X Go — G) support reusable inputs
if PCG.Gen(1*) takes additional random inputs o, b’ € {0,1}* such that:

— Programmability. There exist public efficiently computable functions f,, fy for which

o, b 8, (ko, k1) & PCG.Gen(1*,d/,) .
a,c) < PCG.Expand(0, ko), . f:(b’) > 1 — negl()).

I | (
(b,d) < PCG.Expand(1,k;)

— Security. The distributions

(@, b)) + $
(ko, k1) & PCG.Gen(1*, d’, ¥) } -
(', V)« $,a« $

(ko, k1) & PCG.Gen(1*,d/, V) }

{8, 1)

(CRAX0)

are computationally close. A symmetric requirement holds for t/, b.

Theorem 41 (Multi-party Simple Bilinear PCG). Let PCGy = (PCG2.Gen, PCGy.Expand)
be a programmable PCG for simple bilinear 2-party correlation Ca (specified by e: G1 x Gy — Gr)
with key sizes so(A), s1(A). Then there exists a PCG PCGyr = (PCGys.Gen, PCGyr.Expand) for
the corresponding M -party correlation Cp; with the following properties.

— PCGjs.Gen(1?) runs M(M — 1) executions of PCGy.Gen; each output key k;, i € [M], has
size (M —1)(so(A) + s1(X) + A) bits.

— PCGjys.Expand(i, k;) runs 2(M —1) ezecutions of PCGa.Expand and makes (M —1) evaluations
of a pseudorandom generator.

T%E FEAVIERR :
Proof. We analyze the following M-party PCG construction:

- PCGM.Gen(IA) :
1. Sample random af,...,a), & {0,1}*, ¥],..., b}, & {0,1}* as specified by programma-
bility property.
2. For every i # j € [M]: Run kéj, kij “— PCGQ.Gen(lk,ag,bS) and sample PRG seed s% &
{0,1}*
3. For each i € [M], output k; = ({sij}j#, (K144, {k{i}#i)
— PCGjy.Expand(i, k;):
1. For every j # i, compute

rij + PRG(sY),
(aij, Cij) < Expand2(0, kéj), (bji, djz‘) < Expand2(1, k]12)

2. Output A; = a;;, B; = bj; (same for all j) and
Ci = =Yz Cij + Xy dji + e(Ai, By) + (=1)l<ry,
where i < j]=11if i <jand 0if j <.

Correctness: By assumption, each expanded output from (PCGy.Gen, PCG2.Expand) is compu-
tationally indistinguishable from Cy. In particular, it must hold whp for all ¢ # j: e(A;, B;) =

dij — Cij, where (kéj,kij) — PCGQ.Gen(lA al b’-),(aij,cij) — PCGg.Expand(O, kéj),(bij,dij —

727]

PCG,.Expand(1, kij). This means with overwhelming probability,

M M M M
(Sa.38) =33 e
i— =1 i=1 j=1
M M
=3 e(4,B)+ >3 e(4i, By)
=1 =1 j#i
M M k
— Z e (A, Bi) + Z Z(dw cij) = Z Ci
i—1 i=1 j#i i=1

(Note that for all 4 # j, r;; is added and subtracted exactly once in the sum.) Further, by
indistinguishability of the expanded outputs from PCGy.Expand to the target correlation Cs, it
holds that each (a;,b;) pair is pseudorandom. Thus, for M independent samples, > a; and > b;
are jointly pseudorandom. Finally, from the pairwise pseudorandom offsets r;; (independent of
the a; and b;), it holds that the C; are pseudorandom, up to the required constraint. Correctness
follows.

Security. We now proceed to prove security of PCGys. Let T C [M] corrupted. We wish to
show that given {k;}:cr, the expanded outputs of honest parties (A;, B;, C;);¢r cannot be dis-
tinguished from an independent resampling, conditioned on the expanded values (A;, B;, C;)ier
of the corrupt seeds.

We first observe that due to the pariwise secret pseudorandom offsets %/ = PRG(s%), that
even given {k;}icr and (A;, B;)ier the joint distribution of (C;);¢r is indistinguishable from
random, up to the preserved sum EigT C; as required.

It thus remains to show that given {k;}icr, the expanded honest values (A;, B;);¢r are
pseudorandom. By a hybrid argument, we may replace the values of honest A; and B; one at a
time. It then suffices to adress an extreme case of this step, where all but one party i € [M] is
corrupted.

We first treat A;; the argument for B; is symmetric. For any i € [M],

(ki, ..., ky) & PCGys.Gen(1%)
(A, B;, C;) & PCGs.Expand(i, k;)

a; < $,b, «— $Vj#i
= (167} 500 Fala), X) | (6, K9) € PKEL.Gen(1%, al, %) o
X < RestOfSeeds({t;} i)

{({kj}#i, (Ai, Bi))

where RestOfSeeds is an efficiently sampleable distribution that samples b; < 8,a}; < 8§ Vj # 4,
executes the remaining (2M — 1)(M — 1) instances of PCG2.Gen(1*, a}, b;) and outputs

, .
({k% Yiztierna)s 1Ky Yisi i, Bi = fb(bi)) :

By a direct sequence of (M — 1) hybrids over j # i € [M] we may appeal to the security
of (PCG;.Gen, PCGs. Expand) to iteratively replace the jth key kj generated by (kgj ki)

PCGy.Gen(1%, aj, b;) with ki generated as (ki , k%) + PCGy.Gen(1*, &, b’;), for independent a; <
$.

We thus obtain the above distribution is indistinguishable from

N ag'<.—$?ai<—$,b;<—$‘dj7éi
~ ({kzlj}j7£’i7 fﬁ(‘“iﬁ)? X) (kl%)) kzlj) — PKE?'Gen(lAaaga b;)

X« RestOfSeeds({b} i)

However, in this case 4; = f,(a}) for a; < $ is completely independent of ({R? Fitis X),
generated now as a function in only @; (not a;). The claim, and thus security of the construction,
follows.

Bt 42-party PCG# & programmability? :

Proposition 59 (Programmability of 2-party PCGs). The following 2-party PCGs are
programmable, as per Definition 40.

— The 2-party VOLE generator of [BCGI18], based on DPF and LPN.
— The PCGs for arbitrary simple 2-party bilinear correlations as constructed in this work from
somewhat-homomorphic encryption or BGN.

Proof. M-party VOLE. Recall the 2-party VOLE generator of [BCGI18] takes the following form
(we describe their “dual” construction). The sender party receives a (short representation of) a
sparse random vector y over the field IF, the receiver receives a field element z € I, and each
receives an F'SS share of a multi-point function corresponding to the product zy. The scheme is
parameterized by a public matrix H for which the dual-LPN problem is hard (with respect to
sparse noise). The sender expands to output (u,wv), and the receiver to (z,w).

It was already observed in [BCGI18]| that the construction was programmable with respect
to the receiver’s output x. We observe that a similar programmability holds also for the output
u of the sender, where in particular w is the output of compressing the value y via the public
matrix H. In both cases, the “programming information” (o’ = w and ¥ = z) is anyway given
to the respective party, so the required security notion is directly implied by standard PCG
security.

General Simple Bilinear via HSS. One can support 2-party PCG of any simple bilinear
correlation via our PCGs for degree-2 correlations (e.g., obtained from lattices and BGN) by
giving each party a short seed a’, V/, respectively, as well as HSS shares of a’ and b’ that support
homomorphic evaluation of individual PRG expansion a = PRG(a’),b = PRG(d’) and then the
multiplication ab. This construction inherently supports programmability, by the initial values
a,b.

