Multi-Party Computation

[IKOO] Randomizing Polynomials: A New
Representation with Applications to Round-Efficient
Secure Computation
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o Degree-3 randomizing polynomials are sufficient to represent any function f over any finite
field; the number of outputs, s, and the number of random inputs, m, are at most quadratic
in the branching program size of f.

o Degree-2 randomizing polynomials cannot represent any Boolean function, except those
defined by systems of linear equations and those which can be represented by standard
degree-2 polynomials.

 round efficient protocol{Z#£/4

o Two (respectively, three) communicationrounds are suf- ficient to evaluate any k-argument
function f with per- fectinformation-theoretic [%]-privacy (resp., [%]-privacy),
probabilistic correctness, and communication complexity which is at most quadratic in the
branching program size of f and the number of parties k.

o Zy¥E, thrILATEElzero error probability (perfect correctness), perfect privacy, expected 2 +
€ (resp. 3 + ¢€) rounds, {EE/\AYe.
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o [BB89] # [FKN94] #HE fEUIT BML N BIRAEFFTENFER, BREFEHTENENNETND
AR, FAZlinteractive inversion subprotocol, &R ERSMAround complexity,

e In the current work we utilize a different, inversion-free, randomization approach, extending a

technique from [IK97]. # BAEEEFRNI R FEREEDHXNERTE.

Randomized Polynominials T X :

EEp(z, r) #7485 « {0,1}" — {0, 1} Arandomized polynomial, HIR7Z=HE#FZE 7 Do, D1
1&78: —FHElprivacy), #HDTREAF f(x) B1 5HEEHA « € {0,1}", P(z) = Dy(py, Z—%
El(correctness), 77 Dy & Dy ZitEERE i (statistically far) AZXHZERK SD(Dy,D1) > 1/2
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1. degree of the polynomial vactor p: JXEH#E p WE—TDEp; P, XF & r D2 x; M r;
2. output complexity: [A12 p KIKE
3. randomness complexity: [ r HE

remark:
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Some Points

o AMFPIERY (settings) : the secure channel model and the computational model.

o TEMEN (simulation) : EWM_ L, "This is formalized by requiring that whatever an adversary
can achieve (and learn) in the “real-life” execution of the pro- tocol, it could have also achieved in
an ideal model, where a trusted party is being used to perform the computation.”,

"This can be formalizedby requiringthe existenceof a probabilistic simulator algorithm S,
satisfying the following condition. For any input y and collusion B of at most t parties, the



output generated by S on input (B, yg, f(y)), where yp denotes y restricted to its B-entries,
is distributed identically to the joint view of parties from B in the execution of F' on input y
(including the inputs, random inputs, and communication)"

* An active adversary is allowed to maliciously alter the behavior of the parties it corrupts, whereas
a passive adversary only learns their view of the protocol.

o KX HhZE[Epassive adversary, e-correctness, t-privacy

Branching Programs

Definition of non-deterministic mod-p branching program:

A(non-deterministic) mod-p branching program is defined by a quadruple BP = (G, ®, s, t), where
G = (V, E ) is a directed acyclic graph, ® is a labeling function assigning each edge a negative
literal x?, a positive literal 33@1 the constant 1, and s, t are two special vertices.

Each input assignment x = (a:1, ey a:n) naturally induces an unlabeled subgraph G, , whose edges
include everye e € E such that ®(e) is satisjied by x.

The function computed by BP is the Boolean function f satisfying f(x) = 1 iff. the number of
“accepting” s — t paths in G is nonzero modulo — p.

Finally, define the size of BP to be |V |,the number of vertices in G

Definition of deterministic Branching Program:

The better known model of deterministic branching programs may be defined as the special case in
which for every input x , the out-degree of every vertex in (3, is at most 1 (note that in this case, the
choice of p does not make a difference,and it can be fixed to be as small as 2).

Definition of standard non-deterministic branching program
A definition of standard non-deterministic branching programs may be obtained from the above by
counting the number of accepting paths over the integers, rather than modulo p.
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o BERBMERS (linear-size BP)
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o HARRESRITERTApolynomial-time computablep&i#]
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}31& Low-Degree Randomizing Polynomials

Theorem 3.1 For a matrix A € K™ and vector b € K™, the Boolean function f4 ; testing whether
Ax = b can be randomized by degree-2 polynomials, with output complex- ity 1 and randomness



complexity w .
proof: p(z,r) = r'(Ax — b) £08Z uniform distribution,,

X EIE AT PAZE —LE & B A9 R ESCE — )R Brandomizing Polynomials BRNMGETENZIA KRR, A
AN E T BB AU SEAIE E Z24AY, randomizing polynomialsfi AR ZEX—& ( Hita? ) .

TEHEEELER, MEE: given a modular branching program of size [ + 1 computing f , an input
can be transformed via a simple affine transformation into an [ x [ matrix M, , such that the output
value f(x) directly corresponds to the rank of M.

Lemma 3.2 Let K = GF'(p), where p is prime, and suppose that BP is a mod — p branching
program of size [ 4+ 1 computing a Boolean function f : {0,1}" — {0, 1}". Then, there exists an
affine (degree-1) transformation L : K™ — K" such that for any z € {0,1}":

e If f(z) = 1 then the matrix M, =%/ L(z) is of full rank (i.e., rank(M,) = I}.
e If f(x) = 0 then the matrix M, —def L(x) is one less than full rank (i.e., rank(M;) = 1 — 1}.

proof £l X Eappendix A,

RiE, TEMTSIESIRENNEEX MERZR—TRENER, HEERSTRNER (B

randomized encoding) :

Lemma 3.3 Let R, R> be two independent random matrices, each uniformly distributed over K L,
Then, for any M, M’ € K" such that rank(M) = rank(M’) , we have: RiMR> = R1M'R;.

Lemma 3.4 Let Ry, Ry be distributed as above, and suppose that rank(M) > rank(M’). Then,
SD(Ri1MR>, RiM'R3) > 0.08.

M EETREEBR: MRE—1booleanEE#Imod — p BP, A/J\A I, NIFdegree-3 randomizing
polynomial, output complexity (I — 1)2, randomness complexity 2(I — 1)2

o FftsFefficient distinguisher ?

HittF91ERound-Efficient Secure Computation
181 52 3R 15 2 M BBreduction::

« the e-correct private computation of f (z) reduces to a perfectly-correct private computation of
the randomized function P(x)

e which in turn reduces to a perfectly-correct private computation of a vector of deterministic
polynomials of the same degree as p .



AR NRZBAZImulti partyhiXF, BEHEA r DB D ZEIS TpartiesFH, BN r IRERE,
=0, %UEB@*&E@)\*Drandomized output—JﬁE/z%éﬁtHZﬂJﬂ:f( ) KIEE.

ATHEX—=R, BAHEHEN@E rFoKrs + -+, BCAMEZECHILoBWA, M—EB
S HIBE, f’(yl, k) =% p(z,ry + - ml) LXK, WA, BHERY, EALHR
T, X#EHAIAE: We now argue that a private evaluation of f reduces to a private evaluation of the
degree — d polynomial vector f’ ; that is, any t — private perfectly-correct protocol for computing
f’ immediately translates into a t — private € — correct protocol for computing f.

B9 IEFIIERR 2B 1E X E184.1 Rappendix A,

PIRERESERSFE:

Corollary4.2 Suppose that f : {0,1}" — f{0, 1} can be computed by a mod-p branching
program of size [. Then, a t-private k-party evaluation of f (with a constant one-sided error) is no
more expensive than a t-private k-party evaluation of O(I?) degree-3 polynomials on n + O(t1?)
inputs over GF'(p) .

AEHBER Optlmlzed variants of standard infoxmation-theoretically private protocols (BGWZ? )
EIENIEMBUTER

Lemmad4.3 A degree-3 polynomial vector with n inputs and s outputs over a field K can be
computed t-privately by k parties with either:

k—1
3

« 3 rounds, (optimal) privacy threshold of t = [%51], and communication of O(k?(n? + s)) field
elements.

 2rounds, t = [%5=], and communication of O(k(n + ks)) field elements;

XEEIRAREIL:

Corollary4.4 Let f be a k-argument function which can be computed by a mod-p branching program
of size l. Then, two (respectively, three) communication rounds are suffcient to [’%1] -privately (resp.,
[kz;l]—privately) compute f with a one-sided error: This can be done while communicating
O(k?1%log1 /¢) fielde elements (O (log(maxz{k,p})) - bits each), where E is the one-sided error
probability.



